
Veil: Private Browsing Semantics Without
Browser-side Assistance

Frank Wang
MIT CSAIL

frankw@mit.edu

James Mickens
Harvard University

mickens@g.harvard.edu

Nickolai Zeldovich
MIT CSAIL

nickolai@csail.mit.edu

Abstract—All popular web browsers offer a “private browsing
mode.” After a private session terminates, the browser is supposed
to remove client-side evidence that the session occurred. Unfortu-
nately, browsers still leak information through the file system, the
browser cache, the DNS cache, and on-disk reflections of RAM
such as the swap file.

Veil is a new deployment framework that allows web devel-
opers to prevent these information leaks, or at least reduce their
likelihood. Veil leverages the fact that, even though developers do
not control the client-side browser implementation, developers do
control 1) the content that is sent to those browsers, and 2) the
servers which deliver that content. Veil web sites collectively store
their content on Veil’s blinding servers instead of on individual,
site-specific servers. To publish a new page, developers pass their
HTML, CSS, and JavaScript files to Veil’s compiler; the compiler
transforms the URLs in the content so that, when the page loads
on a user’s browser, URLs are derived from a secret user key.
The blinding service and the Veil page exchange encrypted data
that is also protected by the user’s key. The result is that Veil
pages can safely store encrypted content in the browser cache;
furthermore, the URLs exposed to system interfaces like the
DNS cache are unintelligible to attackers who do not possess the
user’s key. To protect against post-session inspection of swap file
artifacts, Veil uses heap walking (which minimizes the likelihood
that secret data is paged out), content mutation (which garbles
in-memory artifacts if they do get swapped out), and DOM
hiding (which prevents the browser from learning site-specific
HTML, CSS, and JavaScript content in the first place). Veil pages
load on unmodified commodity browsers, allowing developers to
provide stronger semantics for private browsing without forcing
users to install or reconfigure their machines. Veil provides these
guarantees even if the user does not visit a page using a browser’s
native privacy mode; indeed, Veil’s protections are stronger than
what the browser alone can provide.

I. INTRODUCTION

Web browsers are the client-side execution platform for
a variety of online services. Many of these services handle
sensitive personal data like emails and financial transactions.
Since a user’s machine may be shared with other people, she
may wish to establish a private session with a web site, such

that the session leaves no persistent client-side state that can
later be examined by a third party. Even if a site does not
handle personally identifiable information, users may not want
to leave evidence that a site was even visited. Thus, all popular
browsers implement a private browsing mode which tries to
remove artifacts like entries in the browser’s “recently visited”
URL list.

Unfortunately, implementations of private browsing mode
still allow sensitive information to leak into persistent stor-
age [2], [28], [35], [46]. Browsers use the file system or a
SQLite database to temporarily store information associated
with private sessions; this data is often incompletely deleted
and zeroed-out when a private session terminates, allowing
attackers to extract images and URLs from the session. During
a private session, web page state can also be reflected from
RAM into swap files and hibernation files; this state is in
cleartext, and therefore easily analyzed by curious individuals
who control a user’s machine after her private browsing session
has ended. Simple greps for keywords are often sufficient to
reveal sensitive data [2], [28].

Web browsers are complicated platforms that are contin-
ually adding new features (and thus new ways for private
information to leak). As a result, it is difficult to implement
even seemingly straightforward approaches for strengthening
a browser’s implementation of incognito modes. For example,
to prevent secrets in RAM from paging to disk, the browser
could use OS interfaces like mlock() to pin memory pages.
However, pinning may interfere in subtle ways with other
memory-related functionality like garbage collecting or tab
discarding [50]. Furthermore, the browser would have to use
mlock() indiscriminately, on all of the RAM state belonging
to a private session, because the browser would have no way
to determine which state in the session is actually sensitive,
and which state can be safely exposed to the swap device.

In this paper, we introduce Veil, a system that allows web
developers to implement private browsing semantics for their
own pages. For example, the developers of a whisteblowing
site can use Veil to reduce the likelihood that employers can
find evidence of visits to the site on workplace machines.
Veil’s privacy-preserving mechanisms are enforced without
assistance from the browser—even if users visit pages using a
browser’s built-in privacy mode, Veil provides stronger assur-
ances that can only emerge from an intentional composition of
HTML, CSS, and JavaScript. Veil leverages five techniques to
protect privacy: URL blinding, content mutation, heap walking,
DOM hiding, and state encryption.

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23117
www.ndss-symposium.org

• Developers pass their HTML and CSS files through
Veil’s compiler. The compiler locates cleartext URLs in
the content, and transforms those raw URLs into blinded
references that are derived from a user’s secret key and are
cryptographically unlinkable to the original URLs. The
compiler also injects a runtime library into each page;
this library interposes on dynamic content fetches (e.g.,
via XMLHttpRequests), and forces those requests to
also use blinded references.
• The compiler uploads the objects in a web page to Veil’s

blinding servers. A user’s browser downloads content
from those blinding servers, and the servers collaborate
with a page’s JavaScript code to implement the blinded
URL protocol. To protect the client-side memory artifacts
belonging to a page, the blinding servers also dynami-
cally mutate the HTML, CSS, and JavaScript in a page.
Whenever a user fetches a page, the blinding servers
create syntactically different (but semantically equivalent)
versions of the page’s content. This ensures that two
different users of a page will each receive unique client-
side representations of that page.
• Ideally, sensitive memory artifacts would never swap

out in the first place. Veil allows developers to mark
JavaScript state and renderer state as sensitive. Veil’s
compiler injects heap walking code to keep that state from
swapping out. The code uses JavaScript reflection and
forced DOM relayouts to periodically touch the memory
pages that contain secret data. This coerces the OS’s least-
recently-used algorithm to keep the sensitive RAM pages
in memory.
• Veil sites which desire the highest level of privacy

can opt to use Veil’s DOM hiding mode. In this mode,
the client browser essentially acts as a dumb graphical
terminal. Pages are rendered on a content provider’s
machine, with the browser sending user inputs to the
machine via the blinding servers; the content provider’s
machine responds with new bitmaps that represent the
updated view of the page. In DOM hiding mode, the
page’s unique HTML, CSS, and JavaScript content is
never transmitted to the client browser.
• Veil also lets a page store private, persistent state by

encrypting that state and by naming it with a blinded
reference that only the user can generate.

By using blinded references for all content names (includ-
ing those of top-level web pages), Veil avoids information
leakage via client-side, name-centric interfaces like the DNS
cache [19], the browser cache, and the browser’s address bar.
Encryption allows a Veil page to safely leverage the browser
cache to reduce page load times, or store user data across
different sessions of the private web page. A page that desires
the highest level of security will eschew even the encrypted
cache, and use DOM hiding; in concert with URL blinding, the
hiding of DOM content means that the page will generate no
greppable state in RAM or persistent storage that could later
be used to identify the page. Table I summarizes the different
properties of Veil’s two modes for private browsing.

In summary, Veil is the first web framework that allows
developers to implement privacy-preserving browsing se-
mantics for their own pages. These semantics are stronger
than those provided by native in-browser incognito modes;
however, Veil pages load on commodity browsers, and do

not require users to reconfigure their systems or run their
browsers within a special virtual machine [17]. Veil can
translate legacy pages to more secure versions automatically,
or with minimal developer assistance (§V), easing the barrier
to deploying privacy-preserving sites. Experiments show that
Veil’s overheads are moderate: 1.25x–3.25x for Veil with
encrypted client-side storage, mutated DOM content, and heap
walking; and 1.2x–2.1x for Veil in DOM hiding mode.

II. DEPLOYMENT MODEL

Veil uses an opt-in model, and is intended for web sites that
want to actively protect client-side user privacy. For example,
a whistleblowing site like SecureDrop [75] is incentivized
to hide client-side evidence that the SecureDrop website has
been visited; strong private browsing protections give people
confidence that visiting SecureDrop on a work machine will
not lead to incriminating aftereffects. As another example of
a site that is well-suited for Veil, consider a web page that
allows teenagers to find mental health services. Teenagers who
browse the web on their parents’ machines will desire strong
guarantees that the machines store no persistent records of
private browsing activity.

Participating Veil sites must explicitly recompile their
content using the Veil compiler. This requirement is not
unduly burdensome, since all non-trivial frameworks for web
development impose a developer-side workflow discipline. For
example, Aurelia [9], CoffeeScript [12], and Meteor [38]
typically require a compilation pass before content can go live.

Participating Veil sites must also explicitly serve their
content from Veil blinding servers. Like Tor servers [15], Veil’s
blinding servers can be run by volunteers, although content
providers can also contribute physical machines or VMs to
the blinding pool (§IV-B).

Today, many sites are indifferent towards the privacy impli-
cations of web browsing; other sites are interested in protecting
privacy, but lack the technical skill to do so; and others are
actively invested in using technology to hide sensitive user
data. Veil targets the latter two groups of site operators. Those
groups are currently in the minority, but they are growing.
An increasing number of web services define their value in
terms of privacy protections [16], [18], [53], [54], and recent
events have increased popular awareness of privacy issues [49].
Thus, we believe that frameworks like Veil will become more
prevalent as users demand more privacy, and site operators
demand more tools to build privacy-respecting systems.

III. THREAT MODEL

As described in Section II, Veil assumes that a web service
is actively interested in preserving its users’ client-side privacy.
Thus, Veil trusts web developers and the blinding servers.
Veil’s goal is to defend the user against local attackers who take
control of a user’s machine after a private session terminates.
If an attacker has access to the machine during a private
session, the attacker can directly extract sensitive data, e.g.,
via keystroke logging or by causing the browser to core dump;
such exploits are out-of-scope for this paper.

Veil models the post-session attacker as a skilled system
administrator who knows the location and purpose of the swap

2

Browsing mode
Persistent, per-site client-side
storage

Information leaks
through client-side,
name-based interfaces Per-site browser RAM artifacts GUI interactions

Regular browsing Yes (cleartext by default) Yes Yes Locally processed
Regular incognito mode No Yes Yes Locally processed
Veil with encrypted
client-side storage, mutated
DOM content, heap walking

Yes (always encrypted) No (blinding servers) Yes (but mutated and heap-walked) Locally processed

Veil with DOM hiding No No (blinding servers) No Remotely processed

TABLE I. A COMPARISON BETWEEN VEIL’S TWO BROWSING MODES, REGULAR INCOGNITO BROWSING, AND REGULAR BROWSING THAT DOES NOT
USE INCOGNITO MODE.

file, the browser cache, and files like /var/log/* that record
network activity like DNS resolution requests. Such an attacker
can use tools like grep or find to look for hostnames, file
types, or page content that was accessed during a Veil session.
The attacker may also possess off-the-shelf forensics tools like
Mandiant Redline [36] that look for traces of private browsing
activity. However, the attacker lacks the skills to perform a
customized, low-level forensics investigation that, e.g., tries to
manually extract C++ data structures from browser memory
pages that Veil could not prevent from swapping out.

Given this attacker model, Veil’s security goals are weaker
than strict forensic deniability [17]. However, Veil’s weaker
type of forensic resistance is both practically useful and, in
many cases, the strongest guarantee that can be provided
without forcing users to run browsers within special OSes or
virtual machines. Veil’s goal is to load pages within unmodified
browsers that run atop unmodified operating systems. Thus,
Veil is forced to implement privacy-preserving features using
browser and OS interfaces that are unaware of Veil’s privacy
goals. These constraints make it impossible for Veil to provide
strict forensic deniability. However, most post-session attackers
(e.g., friends, or system administrators at work, Internet cafes,
or libraries) will lack the technical expertise to launch FBI-
style forensic investigations.

Using blinded URLs, Veil tries to prevent data leaks
through system interfaces that use network names. Examples
of name-based interfaces are the browser’s “visited pages”
history, the browser cache, cookies, and the DNS cache
(which leaks the hostnames of the web servers that a browser
contacts [2]). It is acceptable for the attacker to learn that a
user has contacted Veil’s blinding servers—those servers form
a large pool whose hostnames are generic (e.g., veil.io)
and do not reveal any information about particular Veil sites
(§IV-B).

Veil assumes that web developers only include trusted
content that has gone through the Veil compiler. A page may
embed third party content like a JavaScript library, but the
Veil compiler analyzes both first party and third party content
during compilation (§IV-A).

Heap walking (§IV-E) allows Veil to prevent sensitive
RAM artifacts from swapping to disk. Veil does not try
to stop information leaks from GPU RAM [31], but GPU
RAM is never swapped to persistent storage. Poorly-written or
malicious browser extensions that leak sensitive page data [32]
are also outside the scope of this paper.

IV. DESIGN

As shown in Figure 1, the Veil framework consists of three
components. The compiler transforms a normal web page into
a new version that implements static and dynamic privacy
protections. Web developers upload the compiler’s output to
blinding servers. These servers act as intermediaries between
content publishers and content users, mutating and encrypting
content. To load the Veil page, a user first loads a small
bootstrap page. The bootstrap asks for a per-user key and the
URL of the Veil page to load; the bootstrap then downloads the
appropriate objects from the blinding servers and dynamically
overwrites itself with the privacy-preserving content in the
target page.

In the remainder of this section, we describe Veil’s architec-
ture in more detail. Our initial discussion involves a simple,
static web page that consists of an HTML file, a CSS file,
a JavaScript file, and an image. We iteratively refine Veil’s
design to protect against various kinds of privacy leakage.
Then, we describe how Veil handles more complex pages that
dynamically fetch and generate new content.

A. The Veil Compiler and veilFetch()
The compiler processes the HTML in our example page

(Figure 1), and finds references to three external objects (i.e.,
the CSS file, the JavaScript file, and the image). The compiler
computes a hash value for each object, and then replaces the
associated HTML tags with dynamic JavaScript loaders for the
objects. For example, if the original image tag looked like this:

the compiler would replace that tag with the following:
<script>veilFetch("b6a0d...");</script>

where the argument to veilFetch() is the hash name
of the image. At page load time, when veilFetch()
runs, it uses an XMLHttpRequest request to download
the appropriate object from the blinding service. In our
example, the URL in the XMLHttpRequest might be
http://veil.io/b6a0d....

Such a URL resides in the domain of the blinding servers,
not the domain of the original content publisher. Furthermore,
the URL identifies the underlying object by hash, so the URL
itself does not leak information about the original publisher or
the data contained within the object. So, even though the exe-
cution of veilFetch() may pollute name-based interfaces
like the DNS cache, a post-session attacker which inspects
those registries cannot learn anything about the content that
was fetched. However, a network-observing attacker who sees
a veilFetch() URL can simply ask the blinding server for

3

CSS

JavaScript

Image

<link…>
<script…>
<img…>

<html>

</html>

Veil compiler

<script>veilFetch(“b4c...”)</script>
<script>veilFetch(“59f...”)</script>
<script>veilFetch(“c29...”)</script>

<html>

</html>

Veil blinding
servers

Veil bootstrap page

Original page
content restored

Overwrites
itself

<script>veilFetch(“b4c...”)</script>
<script>veilFetch(“59f...”)</script>
<script>veilFetch(“c29...”)</script>

<html>

</html>

<link…>
<script…>
<img…>

<html>

</html>

Publisher Cloud Client browser

Fig. 1. The Veil architecture (cryptographic operations omitted for clarity).

the associated content, and then directly inspect the data that
the user accessed during the private session!

To defend against such an attack, Veil associates each
user with a symmetric key kuser (we describe how this
key is generated and stored in Section IV-D). Veil also as-
sociates the blinding service with a public/private keypair.
When veilFetch(hashName) executes, it does not ask
the blinding service for hashName—instead, it asks for
<hashName>kuser

. In the HTTP header for the request,
veilFetch() includes < kuser >PubKeyBServ , i.e., the
user’s symmetric key encrypted by the blinding service’s
public key. When the blinding service receives the request, it
uses its private key to decrypt < kuser >PubKeyBServ . Then,
it uses < kuser > to extract the hash name of the requested
object. The blinding service locates the object, encrypts it
with kuser, and then sends the HTTP response back to the
client. Figure 2 depicts the full protocol.1 In practice, the
blinding service’s public/private keypair can be the service’s
TLS keypair, as used by HTTPS connections to the service.
Thus, the encryption of kuser can be encrypted by the standard
TLS mechanisms used by an HTTPS connection.

Once veilFetch() receives the response, it decrypts
the data and then dynamically reconstructs the appropriate
object, replacing the script tag that contained veilFetch()
with the reconstructed object. The compiler represents each
serialized object using JSON [13]; Figure 3 shows an example
of a serialized image. To reinflate the image, veilFetch()
extracts metadata like the image’s width and height, and
dynamically injects an image tag into the page which has
the appropriate attributes. Then, veilFetch() extracts the
Base64-encoded image data from the JSON, and sets the src
attribute of the image tag to a data URL [37] which directly
embeds the Base64 image data. This causes the browser to load
the image. veilFetch() uses similar techniques to reinflate
other content types.

1A stateful blinding service can cache decrypted user keys and eliminate
the public key operation from all but the user’s first request.

Veil-key: <kuser>PubKey
BService

Veil page Blinding service

HTTP 200 OK
<objectData>kuser

HTTP GET <objectHash> kuser

Fig. 2. The veilFetch() protocol.

{"img_type": "jpeg",
"dataURI": "ab52f...",
"tag_attrs": {"width": "20px",

"height": "50px"}}

Fig. 3. A serialized tag.

This client-server protocol has several nice properties. First,
it solves the replay problem—if an attacker wants to replay
old fetches, or guess visited URLs (as in a CSS-based history
attack [29], [71]), the attacker will not be able to decrypt the
responses unless she has the user’s key. Also, since the blinding
service returns encrypted content, that encrypted content is
what would reside in the browser cache. Thus, Veil pages can
now persist data in the browser cache such that only the user
can decrypt and inspect that content. Of course, a page does
not have to use the browser cache—when a publisher uploads
an object to the blinding service, the publisher indicates the
caching headers that the service should return to clients.

In addition to uploading data objects like images to
the blinding service, the compiler also uploads “root” ob-
jects. Root objects are simply top-level HTML files like
foo.com/index.html. Root objects are signed with the
publisher’s private key, and are stored in a separate names-
pace from data objects using a 2-tuple key that consists
of the publisher name (foo.com) and the HTML name
(index.html). Unlike data objects, which are named by

4

hash (and thus self-verifying), root objects change over time as
the associated HTML evolves. Thus, root objects are signed by
the publisher to guarantee authenticity and allow the blinding
service to reject fradulent updates.

B. The Blinding Service

In the previous section, we described the high-level opera-
tion of the blinding service. It exports a key/value interface
to content publishers, and an HTTP interface to browsers.
The HTTP code path does content encryption as described
above. As described in Section IV-F, the blinding service also
performs content mutation to protect RAM artifacts that spill
to disk; mutation does not provide cryptographically strong
protections, but it does significantly raise the difficulty of post-
session forensics. The blinding servers also implement the
DOM hiding protocol (§IV-H), which Veil sites can use to
prevent exposing any site-specific HTML, CSS, or JavaScript
to client browsers.

The blinding service can be implemented in multiple ways,
e.g., as a peer-to-peer distributed hash table [58], [62], a
centralized service that is run by a trusted authority like the
EFF, or even a single cloud VM that is paid for and operated
by a single privacy-conscious user. In practice, we expect a
blinding service to be run by an altruistic organization like the
EFF, or by altruistic individuals (as in Tor [15]), or by a large
set of privacy-preserving sites who will collaboratively pay for
the cloud VMs that run the blinding servers. Throughout the
paper, we refer to a single blinding service veil.io for con-
venience. However, independent entities can simultaneously
run independent blinding services.

Veil’s publisher-side protocol is compatible with account-
ing, since the blinding service knows which publisher uploaded
each object, and how many times that object has been down-
loaded by clients. Thus, it is simple for a cloud-based blinding
service to implement proportional VM billing, or cost-per-
download billing. In contrast, an altruistic blinding service
(e.g., implemented atop a peer-to-peer DHT [58], [62]) could
host anonymous object submissions for free.

C. The Same-origin Policy

A single web page can aggregate content from a variety of
different origins. As currently described, Veil maps all of these
objects to a single origin: at compile time, Veil downloads the
objects from their respective domains, and at page load time,
Veil serves all of the objects from https://veil.io.

The browser uses the same-origin policy [59] to constrain
the interactions between content from different origins. Map-
ping all content to a single origin would effectively disable
same-origin security checks. Thus, Veil’s static rewriter injects
the sandbox attribute [51] into all <iframe> tags. Using
this attribute, the rewriter forces the browser to give each
frame a unique origin with respect to the same-origin policy.
This means that, even though all frames are served from
the veil.io domain, they cannot tamper with each other’s
JavaScript state. In our current implementation of the compiler,
developers are responsible for ensuring that dynamically-
generated frames are also tagged with the sandbox attribute;
however, using DOM virtualization [27], [40], the compiler

could inject DOM interpositioning code that automatically in-
jects sandbox attributes into dynamically-generated frames.

DOM storage [69] exposes the local disk to JavaScript
code using a key/value interface. DOM storage is partitioned
by origin, i.e., a frame can only access the DOM storage of
its own domain. By assigning an ephemeral, unique origin to
each frame, Veil seemingly prevents an origin from reliably
persisting data across multiple user sessions of a Veil page. To
solve this problem, Veil uses indirection. When a frame wants
to access DOM storage, it first creates a child frame which has
the special URL https://veil.io/domStorage. The
child frame provides Veil-mediated access to DOM storage,
accepting read and write requests from the parent frame
via postMessage(). Veil associates a private storage area
with a site’s public key, and engages in a challenge/response
protocol with a frame’s content provider before agreeing to
handle the frame’s IO requests; the challenge/response traffic
goes through the blinding servers (§IV-G). The Veil frame
that manages DOM storage employs the user’s key to encrypt
and integrity-protect data before writing it, ensuring that post-
session attackers cannot extract useful information from DOM
storage disk artifacts.

Since Veil assigns random, ephemeral origins to frames,
cookies do not work in the standard way. To simulate persistent
cookies, an origin must read or write values in DOM storage.
Sending a cookie to a server also requires explicit action.
For example, a Veil page which contains personalized content
might use an initial piece of non-personalized JavaScript to
find the local cookie and then generate a request for dynamic
content (§IV-G).

D. The Bootstrap Page

Before the user can visit any Veil sites, she must perform a
one-time initialization step with the Veil bootstrap page (e.g.,
https://veil.io). The bootstrap page generates a private
symmetric key for the user and places it in local DOM storage,
protecting it with a user-chosen password. Veil protects the
in-memory versions of the password and symmetric key with
heap walking (§IV-E) to prevent these cleartext secrets from
paging to disk.

Later, the user determines the URL (e.g.,
foo.com/index.html) of a Veil site to load. The
user should discover this URL via an already-known Veil
page like a directory site, or via out-of-band mechanisms
like a traditional web search on a different machine than
the one needing protection against post-session attackers;
looking for Veil sites using a traditional search engine on the
target machine would pollute client-side state with greppable
content. Once the user possesses the desired URL, she returns
to the bootstrap page. The bootstrap prompts the user for her
password, extracts her key from local storage, and decrypts it
with the password. The bootstrap then prompts the user for
the URL of the Veil page to visit. The bootstrap fetches the
root object for the page. Then, the bootstrap overwrites itself
with the HTML in the root object. Remember that this HTML
is the output of the Veil compiler; thus, as the browser loads
the HTML, the page will use veilFetch() to dynamically
fetch and reinflate encrypted objects.

5

Once the bootstrap page overwrites itself, the user will
see the target page. However, no navigation will have
occurred, i.e., the browser’s address bar will still say
https://veil.io. Thus, the browser’s history of visited
pages will never include the URL of a particular Veil page,
only the URL of the generic Veil bootstrap. The compiler
rewrites links within a page so that, if the user clicks a link,
the page will fetch the relevant content via a blinded URL, and
then deserialize and evaluate that content as described above.

E. Protecting RAM Artifacts

As a Veil page creates new JavaScript objects, the browser
transparently allocates physical memory pages on behalf of
the site. Later, the OS may swap those pages to disk if
memory pressure is high and those pages are infrequently
used. JavaScript is a high-level, garbage-collected language
that does not expose raw memory addresses. Thus, browsers
do not define JavaScript interfaces for pinning memory, and
Veil has no explicit way to prevent the OS from swapping
sensitive data to disk.

By frequently accessing sensitive JavaScript objects, Veil
can ensure that the underlying memory pages are less likely
to be selected by the OS’s LRU replacement algorithm. Veil’s
JavaScript runtime defines a markAsSensitive(obj)
method; using this method, an application indicates that
Veil should try to prevent obj from paging to disk. In-
ternally, Veil maintains a list of all objects passed to
markAsSensitive(). A periodic timer walks this list,
accessing every property of each object using JavaScript
reflection interfaces. Optionally, markAsSensitive() can
recurse on each object property, and touch every value in the
object tree rooted by obj. Such recursive traversals make it
easier for developers to mark large sets of objects at once.
JavaScript defines a special window object that is an alias for
the global namespace, so if an application marks window as
recursively sensitive, Veil will periodically traverse the entire
heap graph that is reachable from global variables. Using
standard techniques from garbage collection algorithms, Veil
can detect cycles in the graph and avoid infinite loops.

markAsSensitive() maintains references to all of the
sensitive objects that it has ever visited. This prevents the
browser from garbage collecting the memory and possibly
reusing it without applying secure deallocation [11]. At page
unload time, Veil walks the sensitive list a final time, deleting
all object properties. Since JavaScript does not expose raw
memory, Veil cannot memset() the objects to zero, but
deleting the properties does make it more difficult for a post-
session attacker to reconstruct object graphs.

Sensitive data can reside in the JavaScript heap, but it can
also reside in the memory that belongs to the renderer. The ren-
derer is the browser component that parses HTML, calculates
the screen layout, and repaints the visual display. For example,
if a page contains an HTML tag like Secret, the
cleartext string Secret may page out from the renderer’s
memory. As another example, a rendered page’s image content
may be sensitive.

The renderer is a C++ component that is separate from
the JavaScript engine; JavaScript code has no way to directly
access renderer state. However, JavaScript can indirectly touch

renderer memory through preexisting renderer interfaces. For
example, if the application creates an empty, invisible
tag, and injects the tag into the page’s HTML, the browser
invalidates the page’s layout. If the application then reads the
size of the image tag’s parent, the browser is forced to recal-
culate the layout of the parent tag. Recalculating the layout
touches renderer memory that is associated with the parent
tag (and possibly other tags). Thus, Veil can walk the renderer
memory by periodically injecting invisible tags throughout the
HTML tree (forcing a relayout) and then removing those tags,
restoring the original state of the application.

The browser’s network stack contains memory buffers with
potentially sensitive content from the page. However, Veil
only transmits encrypted data over the network, so network
buffers reveal nothing to an attacker if they page out to disk
and are subsequently recovered. Importantly, Veil performs
heap walking on the user’s password and symmetric key. This
prevents those secrets from paging out and allowing an attacker
to decrypt swapped out network buffers.

F. Mutation Techniques

Veil’s main protection mechanism for RAM artifacts is
heap walking, and we show in Section VII-C that heap walking
is an effective defense during expected rates of swapping.
However, Veil provides a second line of defense via content
mutation. Mutation ensures that, each time a client loads
a page, the page will return different HTML, CSS, and
JavaScript, even if the baseline version of the page has not
changed. Mutation makes grep-based attacks more difficult,
since the attacker cannot simply navigate to a non-Veil version
of a page, extract identifying strings from the page, and then
grep local system state for those strings. Content mutation is
performed by the blinding servers (§IV-B); below, we briefly
sketch some mutation techniques that the blinding servers can
employ.

Note that blinding servers can mutate content in the
background, before the associated pages are requested by
a client. For example, blinding servers can store a pool of
mutated versions for a single object, such that, when a client
fetches HTML that refers to the object, the blinding server
can late-bind the mutated version that the page references.
Using this approach, mutation costs need not be synchronous
overheads that are paid when a client requests a page.

JavaScript: To mutate JavaScript files, the blinding ser-
vice uses techniques that are adapted from metamorphic
viruses [72]. Metamorphic viruses attempt to elude malware
scanners by ensuring that each instantiation of the virus has
syntactically different code that preserves the behavior of the
base implementation. For example, functions can be defined
in different places, and implemented using different sequences
of assembler instructions that result in the same output.

Our prototype blinding service mutates JavaScript code
using straightforward analogues of the transformations de-
scribed above. JavaScript code also has a powerful advantage
that assembly code lacks—the eval() statement provides a
JavaScript program with the ability to emit new mutated code
at runtime. Such “eval()-folding” is difficult to analyze [14],

6

particularly if the attacker can only recover a partial set of
RAM artifacts for a page.2

Note that if a faulty blinding server forgets to mutate
invocations of veilFetch(hashName), then unscrambled
object hash names may be paged out to disk in JavaScript
source code! If an attacker recovered such artifacts, he could
directly replay the object fetches that were made by the private
session. Thus, JavaScript mutation is a core responsibility for
the blinding service.

HTML and CSS: The grammars for HTML and CSS are
extremely complex and expressive. Thus, there are many
ways to represent a canonical piece of HTML or CSS [24].
For example, HTML allows a character to be encoded as a
raw binary symbol in a character encoding like UTF-8 or
Unicode-16. HTML also allows characters to be expressed
as escape sequences known as HTML entities. An HTML
entity consists of the token “&#” followed by the Unicode
code point for a character and then a semicolon. For instance,
the HTML entity for “a” is “a”. The HTML specification
allows an HTML entity to have leading zeroes which the
browser ignores; the specification also allows for code points
to be expressed in hexadecimal. Thus, to defeat simple exact-
match greps of HTML artifacts, the blinding service can
randomly replace native characters with random HTML entity
equivalents.

There are a variety of more sophisticated techniques to
obfuscate HTML and CSS. For a fuller exploration of these
topics, we defer the reader to other work [24]. Our blinding
service prototype uses random HTML entity mutation. It also
obscures the HTML structure of the page using randomly
inserted tags which do not affect the user-perceived visual
layout of the page.

Images: The blinding service can automatically mutate
images in several ways. For example, the blinding service
can select one of several formats for a returned image (e.g.,
JPEG, PNG, GIF, etc.). Each instantiation of the image can
have a different resolution, as well as different filters that
are applied to different parts of the visual spectrum. Web
developers can also use application-specific knowledge to
generate more aggressive mutations, such as splitting a single
base image into two semi-transparent images that are stacked
atop each other by client-side JavaScript. As explained in
our threat model (§III), Veil does not protect against leaks of
the raw display bitmap that resides in GPU memory; thus,
the mutation techniques from above are sufficient to thwart
grep-based forensics on memory artifacts from the DOM tree.
For a more thorough discussion of image mutation techniques
that thwart classification algorithms, we defer to literature
from the computer vision community [7].

G. Dynamic Content

At first glance, Veil’s compile-time binding of URLs to
objects seems to prevent a publisher from dynamically gen-
erating personalized user content. However, Veil can support

2Some .NET viruses already leverage access to the runtime’s reflection
interface to dynamically emit code [65].

dynamic content generation by using the blinding service as a
proxy that sits between the end-user and the publisher. More
specifically, a Veil page can issue an HTTP request with a
msg-type of “forward”. The body of the request contains
two things: user information like a site-specific Veil cookie
(§IV-C), and a publisher name (e.g., foo.com). The page
gives the request a random hash name, since the page will not
cache the response. When the blinding service receives the
request, it forwards the message to the publisher’s dynamic
content server. The publisher generates the dynamic content
from the provided user information, and then sends the content
to the blinding service, who forwards it to the client as the
HTTP response to the client’s “forward” request. The client
and the publisher can encrypt the user information and the
personalized content if the blinding service is not trusted with
user-specific data; in this scenario, the content provider’s web
server is responsible for mutating objects before returning them
to the client. Regardless, the content provider must compile
dynamically-generated content (§IV-A and §V). Fortunately,
the compilation cost for a single dynamic object is typically
small. For example, compiling a 100 KB image requires
Base64-encoding it and generating a few metadata fields,
taking roughly 75 ms. Content providers can compile multiple
dynamic objects in parallel.

H. DOM Hiding

Heap walking reduces the likelihood that in-memory
browser state will swap to disk. Content mutation ensures
that, if state does swap out, then the state will not contain
greppable artifacts from a canonical version of the associated
page. However, some Veil sites will be uncomfortable with
sending any site-specific HTML, CSS, or JavaScript to a client,
even if that content is mutated. For example, a site might be
concerned that a determined sysadmin can inspect swapped-
out fragments of mutated HTML, and try to reverse-engineer
the mutation by hand.

To support these kinds of sites, Veil provides a mode
of operation called DOM hiding. In DOM hiding mode, the
user’s browser essentially acts as a thin client, with the full
version of the page loaded on a remote server that belongs to
the content provider. The user’s browser employs a generic,
page-agnostic JavaScript library to forward GUI events to
the content provider through the blinding service; the content
provider’s machine applies each GUI event to the server-side
page, and then returns an image that represents the new state
of the page.

The advantage of DOM hiding is that site-specific HTML,
CSS, and JavaScript is never pushed to the user’s browser.
The disadvantage is that each GUI interaction now suffers
from a synchronous wide-area latency. For some Veil sites,
this trade-off will be acceptable. We characterize the additional
interactive latency in Section VII-D.

Figure 4 provides more details about how Veil implements
DOM hiding. The Veil bootstrap page receives the URL to
load from the user, as described in Section IV-D. The bootstrap
page then issues an initial HTTP request through the blinding
servers to the content provider. The content provider returns
a page-agnostic remoting stub; this stub merely implements
the client-side of the remote GUI architecture. As the content

7

Veil
remoting
stub

Regular
browser

Veil blinding
servers

Veil GUI proxy

Headless
browser

Normal
version of

page

Bitmap
display area

GUI event
handlers +

image
rendering

logic

User Content provider

Remoting protocol

Fig. 4. With DOM hiding, the client-side remoting stub sends GUI events to
the content provider, and receives bitmaps representing new page states. The
page’s raw HTML, CSS, and JavaScript are never exposed to the client.

provider returns the stub to the user, the provider also launches
a headless browser3 like PhantomJS [1] to load the normal
(i.e., non-rewritten) version of the page. The content provider
associates the headless browser with a Veil GUI proxy. The
proxy uses native functionality in the headless browser to take
an initial screenshot of the page. The GUI proxy then sends
the initial screenshot via the blinding servers to the user’s
remoting stub. The stub renders the image, and uses page-
agnostic JavaScript event handlers to detect GUI interactions
like mouse clicks, keyboard presses, and scrolling activity.
The stub forwards those events to the GUI proxy. The proxy
replays those events in the headless browser, and ships the
resulting screen images back to the client. Note that a page
which uses DOM hiding will not use encrypted client-side
browser caching (§IV-A) or DOM storage (§IV-C)—there will
be no page-specific client-side state to store.

I. Discussion

Veil tries to eliminate cleartext client-side evidence of
browsing activity. However, Veil does not prevent the server-
side of a web page from tracking user information. Thus, Veil
is compatible with preexisting workflows for ad generation
and accounting (although advertising infrastructure must be
modified to use blinded URLs and “forward” messages).

If a Veil page wants to use the browser cache, Veil employs
encryption to prevent attackers from inspecting or modifying
cache objects. However, an attacker may be able to fingerprint
the site by observing the size and number of its cached objects.
Sun et al. [63] provide a survey of techniques which prevent
such fingerprinting attacks; their discussion is in the context
of protecting HTTPS sessions, but their defensive techniques
are equally applicable to Veil. The strongest defense is to
reduce the number of objects in a page. Veil’s compiler

3A headless browser is one that does not have a GUI. However, a headless
browser does maintain the rest of the browser state; for example, DOM
state can be queried using normal DOM methods, and modified through the
generation of synthetic DOM events like mouse clicks.

can easily do this by inlining objects into HTML [39]; for
example, the compiler can directly embed CSS content that
the original HTML incorporated via a link to an external file.
The blinding service can also inject noise into the distribution
of object sizes and counts. For example, when the service
returns objects to clients, it can pad data sizes to fixed offsets,
e.g., 2KB boundaries or power-of-2 boundaries. Alternatively,
the blinding service can map object sizes for page X to
the distribution for object sizes in a different page Y [73].
All of these defensive approaches hurt performance in some
way—inlining and merging reduce object cacheability, and
padding increases the amount of data which must be encrypted
and transmitted over the network. Note that publishers must
explicitly enable client-side caching, so paranoid sites can
simply disable this feature.

V. PORTING LEGACY APPLICATIONS

In this section, we describe how Veil helps developers to
port legacy web pages to the Veil framework. In particular, we
provide case studies which demonstrate how Veil’s compiler
and runtime library can identify unblinded fetches and, in
some cases, automatically transform those fetches into blinded
ones.

Raw XMLHttpRequests: Veil’s compiler traverses a stat-
ically defined HTML tree, converting raw URLs into Veil
hash pointers. However, a page’s JavaScript code can use
XMLHttpRequests to dynamically fetch new content. Veil’s
static HTML compiler does not interpose on such fetches, so
they will generate unblinded transfers that pollute the client’s
DNS cache and browser cache.

In debugging mode, Veil’s client library shims
the JavaScript runtime [40] and interposes on the
XMLHttpRequest interface. This allows Veil to inspect
the URLs in XMLHttpRequests before the associated
HTTP fetches are sent over the network. Veil drops unblinded
requests and writes the associated URLs to a log. A web
developer can then examine this log and determine how to
port the URLs.

For static content, one porting solution is to leverage Veil’s
AJAX maps. Once the debugging client library has identified a
page’s raw XMLHttpRequest URLs, the library sends those
URLs to Veil’s HTML compiler. The compiler automatically
fetches the associated objects and uploads them to the object
servers. Additionally, when the compiler rewrites the HTML,
it injects JavaScript code at the beginning of the HTML which
maps the raw XMLHttpRequest URLs to the hash names
of the associated objects. Later, when the page is executed
by real users, Veil’s shimmed XMLHttpRequests use the
AJAX map to convert raw URLs to blinded references. Veil
will drop requests that are not mentioned in the translation
map. This approach is complete from the security perspective,
since all unblinded XMLHttpRequests will be dropped.
However, for this approach to please users (who do not want
any requests to drop), Veil developers should use testing tools
with good coverage [42], [45], [60] to ensure that all of a
page’s XMLHttpRequest URLs are mapped.

AJAX maps are unnecessary for native Veil pages which
always generate blinded XMLHttpRequests. However,

8

URL validation via XMLHttpRequest shimming is useful
when developers must deal with complex legacy libraries.

Dynamic tag generation: A legacy page can generate un-
blinded fetches by dynamically creating new DOM nodes
that contain raw URLs in src attributes. For example, using
document.createElement(), a page can inject a new
 tag into its HTML. A page can also write to the
innerHTML property of a preexisting DOM node, creat-
ing a new HTML subtree that is attached to the preexist-
ing node. Neither type of tag creation will be captured by
XMLHttpRequest shimming.

XMLHttpRequest shimming is a specific example of a
more general technique called DOM virtualization. If desired,
the entire DOM interface can be virtualized [3], [27], [41],
allowing Veil to interpose on all mechanisms for dynamic tag
creation. However, full DOM virtualization adds non-trivial
performance overhead—the native DOM implementation is
provided by the browser in fast C++ code, but a virtualized
DOM is implemented by the application in comparatively slow
JavaScript code. Furthermore, the full DOM interface is much
more complex than the narrow XMLHttpRequest interface.

Our current implementation of Veil supports
XMLHttpRequest shimming, but not full DOM
virtualization. We leave the integration of Veil with a
full virtualization system [26] as future work.

Unblinded links in CSS: CSS files can directly
reference image objects using the url() statement, e.g.,
body{background: url(‘x.jpg’)}. After the Veil
compiler processes HTML files, it examines the associated
CSS files and replaces raw image links with inline data URLs.
Thus, when the Veil page loads a post-processed CSS file,
the image data will be contained within the CSS itself, and
will not require network fetches.

Angular.js: Angular [4] is a popular JavaScript framework
that provides model-view-controller semantics for web ap-
plications. Angular uses a declarative model to express data
bindings. For example, the {{}} operator is used to embed live
views of the controller into HTML. The HTML snippet instructs Angular to dynami-
cally update the content of the whenever the JavaScript
value controller.x changes. Many other popular frame-
works define a similar templating mechanism [6], [55], [67].

The {{}} operator is not part of the official HTML
grammar. To implement {{}} and other kinds of data binding,
Angular uses a dynamic DOM node compiler. This compiler
is a JavaScript file that runs at the end of the page load, when
the initial DOM tree has been assembled. The compiler locates
special Angular directives like {{}}, and replaces them with
new JavaScript code and new DOM nodes that implement the
data binding protocol.

Angular allows URLs to contain embedded {{}} ex-
pressions. Since these URLs are not resolved until runtime,
Veil’s static compiler cannot directly replace those URLs with
blinded ones. However, Veil can rewrite Angular directives in
a way that passes control to Veil code whenever a data binding

changes. In the previous example, Veil rewrites the tag
as follows:

The src attribute of the image is set to a network path which
is known to be nonexistent (but whose URL does not leak
private information). When the page tries to load the image,
the load failure will invoke a custom onerror handler that
Veil has attached to the window object. That handler will
read the value of the alt attribute, which will contain the
dynamic value of controller.x. Veil will then issue a
blinded fetch for the associated image. In parallel, Veil also sets
an Angular $watch() statement to detect future changes in
{{controller.x}}; when a change occurs, Veil reads the
new value, and then blindly fetches and updates the image as
before. This basic approach is compatible with the template
semantics of other popular JavaScript frameworks [6], [55],
[67].

If dynamic Angular URLs can be drawn from an arbitrarily
large set, Veil uses the “forward” message type from Sec-
tion IV-I to bind the raw URL to a blinded one. If the URL is
drawn from a finite set, the compiler can upload the associated
objects to the blinding service, and then inject the page with
a blinding map that translates resolved Angular URLs to the
associated hash names. The blinding service mutates that table
in the same way that it mutates the hash names passed to
veilFetch().

VI. IMPLEMENTATION

Our Veil prototype consists of a compiler, a blinding server,
a GUI proxy, a bootstrap page, and a client-side JavaScript
library that implements veilFetch() and other parts of the
Veil runtime.

We implemented the compiler and the blinding server in
Python. The compiler uses BeautifulSoup [57] to parse and
mutate HTML; the compiler also uses the Esprima/Escodegen
tool chain [25], [64] to transform JavaScript code into ASTs,
and to transform the mutated ASTs back into JavaScript. To
implement cryptography, we use the PyCrypto library [33]
in the blinding server, and the native Chrome WebCrypto
API [70] in the Veil JavaScript library. We use OpenCV [48]
to perform image mutation on the blinding server.

To implement DOM hiding, we used Chrome running in
headless mode as the browser used by the content provider’s
GUI proxy. The GUI proxy was written in Python, and used
Selenium [61] to take screenshots and generate synthetic GUI
events within the headless browser.

VII. EVALUATION

In this section, we evaluate Veil’s raw performance, and
its ability to safeguard user privacy. Using forensic tools
and manual analysis, we find that blinded references and
encrypted objects are sufficient to prevent information leakage
through the browser cache and name-based interfaces like the
DNS cache. We show that Veil’s heap walking techniques are
effective at preventing secrets from paging out unless system-
wide memory pressure is very high. We also demonstrate that
the performance of our Veil’s prototype is acceptable, with
page load slowdowns of 1.2x–3.25x.

9

Operation Speed
Generate an AES key and encrypt it with RSA public key (2048 bit) 0.75 ms
Encrypt 64 character hash (blinded reference) 0.16 ms
Throughput for decryption using AES-CTR 520 MB/s
Throughput for verifying SHA256 hash of file 220 MB/s

Fig. 5. Overhead for client-side JavaScript cryptography using the WebCrypto API [70].

Operation Speed
Decrypt AES key (2048 bit RSA) 3.1 ms
Decrypt 64 char hash (blinded reference) 0.04 ms
Throughput for encryption using AES-CTR 62 MB/s

Fig. 6. Overhead for server-side operations using PyCrypto [33].

All performance tests ran on a machine with a 2 GHz
Intel Core i7 CPU with 8GB of RAM. Unless otherwise
specified, those tests ran in the Chrome browser, and we ran
each experiment 100 times and measured the average. We
configured Veil to use 2048-bit RSA and 128-bit AES in CTR
mode. The phrase “standard Veil mode” corresponds to non-
DOM hiding mode.

A. Performance Microbenchmarks

Veil uses cryptography to implement blind references and
protect the data that it places in client-side storage. Figure 5
depicts the costs for those operations. Before a user can load a
Veil page, she must generate an AES key and encrypt it with
the blinding service’s RSA key. This one time cost is 0.75 ms.
The remaining three rows in Figure 5 depict cryptographic
overheads that Veil incurs during a page load.

• For veilFetch() to generate a blinded reference, it
must encrypt a hash value with the user’s AES key. This
operation took 0.16 ms.
• When veilFetch() receives a response, it must de-

crypt that response with the AES key. That operation
proceeds at 520 MB/s. For example, decrypting a 300
KB image would require 0.6 ms.
• veilFetch() also validates the hash of the down-

loaded object. This proceeds at 220 MB/s, requiring 1.3
ms for a 300 KB image.

Figure 6 depicts the cryptography overheads on the server-side
of the protocol. End-to-end, fetching a 300 KB object incurs
roughly 10 ms of cryptographic overhead.

B. Performance Macrobenchmarks: Standard Veil Mode

To measure the increase in page load time that Veil im-
poses, we ported six sites to the Veil framework. Washington
Post is the biggest site that we ported, and contains large
amounts of text, images, and JavaScript files. Imgur is a
popular image-sharing site; compared to the other test sites,
it has many images but less text. Woot! is an e-commerce site
that has a large amount of text and images, but comparatively
few scripts. Piechopper is a highly dynamic site that uses
Angular (§V). Piechopper is script-and-text heavy, but has few
images. University represents a university’s website. This site
is the smallest one that we tested, although it uses CSS with

Imgur Woot WaPo University Piechopper Google
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Regular
Veil-nocrypto
Veil-crypto

Fig. 7. Page load times for each website: regular; with Veil (but no
cryptography); with Veil (and using cryptography).

raw URLs that Veil must blind (§V). Google represents the
results page for the search term “javascript.” Most of that
page’s JavaScript and CSS objects are inlined into the HTML,
meaning that they do not require network fetches.

To port a preexisting site to Veil, we had the compiler
download the top-level HTML file and extract the URLs
which referenced external objects like images. The compiler
downloaded those objects from the relevant servers. After
calculating hashes for those objects (and converting raw URLs
into blinded ones), the compiler uploaded the objects to the
blinding server. Since preexisting sites were not designed with
Veil in mind, they occasionally fetched content dynamically,
e.g., via unblinded tags generated by JavaScript at
runtime. For sites like this, we observed which objects were
dynamically fetched, and then manually handed them to the
compiler for processing; we also manually rewrote the object
fetch code to refer to the compiler-generated object names.
Native Veil pages would invoke the Veil runtime library to
dynamically fetch such content, avoiding the need for manual
rewriting.

Page load time: Figure 7 depicts the load times for three
versions of each site: the regular version of the site, a Veil
port that does not perform cryptography, and a Veil port
with cryptography enabled. The regular versions of a page
were loaded from a localhost webserver, whereas the Veil
pages were loaded from a localhost blinding server. This setup
isolated the overhead of cryptography and content mutation.

As shown in Figure 7, page loads using Veil with no
cryptography were 1.25x–2x slower. This is mostly due to
extra computational overhead on the client. For example,

10

Imgur Woot WaPo University Piechopper Google
0

1

2

3

4

5

6

7

8

9

10
Ra

tio
 o

f V
ei

l o
bj

ec
t s

ize
 to

 o
rig

in
al

 o
bj

ec
t s

ize

Images
Index file
Javascript

Fig. 8. Size increases for Veil’s mutated objects.

parsing overheads increased because, as we quantify below,
mutated objects were larger than the baseline objects; for
images, the browser also had to Base64-decode the bitmaps
before displaying them. Veil with cryptography added another
slowdown factor of 1.1x–1.63x, with higher penalties for pages
with many objects (regardless of their type). The end-to-end
slowdown for the full Veil system was 1.25x–3.25x. Note
that these slowdowns were for browsers with cold caches;
Veil’s overhead would decrease with caching, since server-side
cryptography could be avoided. Also note that the University
site was a challenging case for Veil, because the site was
small in absolute size, but has many small images. Thus, Veil’s
per-blinded-reference cryptographic overheads (see Figures 5
and 6) were paid more frequently. A Veil-optimized version
of the site would use image spriting [21] to combine multiple
small images into a single, larger one.

Object growth: Figure 8 shows how object sizes grew after
post-processing by Veil. Images experienced two sources of
size expansion: mutation and Base64 encoding. Base64 en-
coding resulted in a 1.33x size increase. Our Veil prototype
implements mutation via the addition of Gaussian noise, with
the resulting size increases dependent on the image format.
PNG is lossless, so the addition of noise generated a 10x size
increase. In contrast, JPG is a lossy format, so noise injection
resulted in less than a 2x size increase. The Piechopper and
Google pages contained many PNGs, and thus suffered from
worse image expansion than the other test pages.

As shown in Figure 8, mutated JavaScript files typically re-
mained the same size, or became somewhat smaller—mutation
adds source code, but Veil passes the mutated code through a
minifier which removes extraneous whitespace and rewrites
variable names to be shorter. HTML suffered from larger size
increases, because mutation tricks like random HTML entity
encoding strictly increase the number of characters in the
HTML.

Server-side scalability: Figure 9 shows the HTTP-level re-
quest throughput of a Veil blinding server, compared to the
baseline performance of a blinding server that performed none
of Veil’s added functionality (and thus acted as a normal web
server). HTTP requests were generated using ab, the Apache
benchmarking tool [5].

0 16 32 48 64 80 96 112 128
Concurrent requests

0

50

100

150

200

250

300

Re
qu

es
ts

 p
er

 se
co

nd

Regular web server
Veil blinding server

Fig. 9. Scalability comparison between a blinding server and a regular web
server.

As shown in Figure 9, Veil reduces web server throughput
by roughly 70% due to the additional cryptographic operations
that Veil must perform. Remember that when Veil operates in
regular (i.e., non-DOM hiding mode), Veil blinding servers
mutate content in the background, out of the critical path for
an HTTP response; thus, the slowdowns in Figure 9 are solely
caused by synchronous cryptographic operations.

C. Preventing Information Leakage

Name-based Interfaces: To determine how well Veil protects
user privacy, we created a baseline VM image which ran
Lubuntu 13.10 and had two different browsers (Firefox and
Chrome). In the baseline image, the browsers were installed,
but they had not been used to visit any web pages. We then
ran a series of experiments in which we loaded the baseline
image, opened a browser, and then visited a single site. We
took a snapshot of the browser’s memory image using gcore,
and we also examined disk state such as the browser cache and
the log entries for DNS resolution requests. We did this for
the regular and Veil-enabled versions of each page described
in Section VII-B.

In all tests, the Veil pages were configured to store data in
the browser cache, and in all tests, the cache only contained
encrypted data at the end of the private session. Greps through
the memory snapshots and DNS records did not reveal cleartext
URLs or hostnames. Unsurprisingly, the regular versions of
the web pages left unencrypted data in the browser cache,
and various cleartext URLs in name-based data stores. To
cross-validate these results, we repeated these experiments on
Windows, and used the Mandiant Redline forensics tool [36] to
search for post-session artifacts in persistent storage. Redline
confirmed that the only cleartext URL in the browser history
was the URL for the Veil bootstrap page, and that all other
URLs were blinded.

Protecting RAM Artifacts: To determine whether heap walk-
ing can prevent secrets from paging out, we wrote a C program
which gradually increases its memory pressure. The program
allocates memory without deallocating any, and periodically,
it reads the first byte in every allocated page to ensure that the
OS considers the page to be hot. We ran the program inside of
a QEMU VM with 1 GB of swap space and 1 GB of RAM.
We also ran a browser inside of the VM. The browser had
20 open tabs. Each tab had a Uint8Array representing a tab-
specific AES key, and a tab-specific set of strings in its HTML.

11

0 10 20 30 40 50 60 70 80
Percentage of swap used

0

2

4

6

8

10

12

14

16

18

20
Nu

m
be

r o
f o

bj
ec

ts
 p

ag
ed

 to
 d

isk
Rendered HTML w/o heap walk
Keys w/o heap walk
Rendered HTML w/ heap walk
Keys w/ heap walk

Fig. 10. The effectiveness of heap walking to prevent secrets from paging
out.

The control experiments did not do heap walking. The test
experiments used Veil’s heap walking code to touch the AES
key and the renderer state.

The VM used the pwritev system call to write memory
pages to the swap file. To determine whether secrets paged
out as memory pressure increased, we used strace to log the
pwritev calls. Since each tab contained a set of unique
byte patterns, we could grep through our pwritev logs to
determine whether secret RAM artifacts hit the swap file. We
ran experiments for increasing levels of memory pressure until
the VM became unresponsive, at roughly 75% in-use swap
space.

Figure 10 shows the results. The x-axis varies the memory
pressure, and the y-axis depicts the number of tabs which
suffered data leakage, as determined by greps through the
pwritev log. Heap walking successfully kept all of the secret
keys from paging out, up to the maximum 75% of in-use swap
space. Without heap walking, keys begin to page out at 35%
swap utilization; by 50%, all keys had swapped out. Note that
the data points do not perfectly align on the x-axis due to
nondeterminism in when the VM decides to swap data out.

Heap walking was less effective for renderer memory
pages. Those pages swapped out earlier and immediately in
the control case, around 35% swap utilization. With Veil,
renderer state also began to leak at 35% utilization, but Veil
still managed to safeguard 12 out of 20 tabs up to 63% swap
utilization.

D. DOM Hiding

When Veil runs in DOM hiding mode, the client-side
page contains no site-specific, greppable content. Thus, Veil
does not need to perform heap walking (although Veil does
use blinding servers to eliminate information leakage through
name-based system interfaces). We loaded our test pages
in DOM hiding mode, and confirmed the absence of site-
specific content by grepping through VM images as we did
in Section VII-C.

Figure 11 evaluates the impact of DOM hiding on a page’s
initial load. The client, the blinding server, and the content

Imgur Woot Wapo University Piechopper Google
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Regular page load
Client rendering
Headless Chrome
Blinding server

Fig. 11. DOM hiding’s impact on page load times.

Imgur Woot Wapo University Piechopper Google
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pa
ge

 L
oa

d
Ti

m
e

(s
)

DOM hiding overhead
Client rendering
Headless Chrome
Blinding server

Fig. 12. The time that a DOM-hiding page needs to respond to a mouse
click event.

server ran on the same machine, to focus on computational
overheads. Figure 11 demonstrates that DOM hiding imposed
moderate overheads, with page load times increasing by 1.2x–
2.1x. When Veil runs in DOM hiding mode, image mutation
has to be performed synchronously, for each screenshot that
is returned to a client; screenshotting requires 150ms–180ms,
whereas image mutation requires 170ms–200ms.

Figure 12 shows the time that a DOM-hiding page needed
to respond to a mouse click. Responding to such a GUI
event required the browser to forward the event to the content
provider, and then receive and display the new screenshot.
Once again, the bulk of the end-to-end time was consumed by
the screenshot capture and the image mutation at the content
provider.

Privacy-sensitive users and web sites are often willing
to trade some performance for better security. For example,
fetching an HTTP object through Tor results in HTTP-level
RTTs of more than a second [68]. Thus, we believe that
the performance of Veil’s DOM hiding mode is adequate
for many sites. However, Veil’s performance may be too

12

25 50 100
RTT (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Pa

ge
 L

oa
d

Ti
m

e
(s

)
Imgur Page Load Times

Regular
Veil w/ content-mutation
Veil w/ DOM hiding

Fig. 13. The impact of emulated network latency on page load times. In all
cases, the download bandwidth cap was 30 Mbps, and the upload bandwidth
cap was 10 Mbps, emulating a broadband connection. Bandwidth was not
varied because page load times are largely governed by network latency, not
bandwidth [20].

slow for sites that are highly interactive, or require content
servers to frequently and proactively push new images (e.g.,
due to animations in a page). Our next version of the Veil
GUI proxy will grab screenshots directly from the content
server’s framebuffer [10] instead of via the comparatively-slow
rendering API that browsers expose [44]; this implementation
change will greatly reduce screenshotting overhead.

E. Network Latency

Figure 13 uses Chrome’s built-in network emulation frame-
work [22] to compare load times for three versions of the
Imgur page: a normal version; a Veil version which used con-
tent mutation, heap walking, and encrypted storage; and a Veil
version which used DOM hiding. The DOM hiding variant was
largely insensitive to increased network latency, since loading
a page only required two HTTP-level round trips (one to fetch
the bootstrap page, and another to fetch the initial screenshot).
The other variant of Veil was more sensitive to network latency.
The reason is that, in this version of the page, the bootstrap
code had to fetch multiple objects, all of which were served
from the same blinding server origin (https://veil.io).
Browsers cap the number of simultaneous connections that a
client can make to a single origin, so the Veil page could not
leverage domain sharding [30] to circumvent the cap. This
limitation is not fundamental to Veil’s design, since content
providers can shard across multiple blinding server domains
(e.g., https://a.veil.io and https://b.veil.io).
However (and importantly), if a content provider wishes to
use sharding, the provider must be careful to avoid bias
in the mapping of objects to domains—otherwise, per-site
fingerprints may arise in a page’s access patterns to various
domains. Thus, for some content providers, domain sharding
may not be worth the potential loss in security.

Domain sharding is also relevant to Content Security Poli-
cies (CSPs) [43]. A CSP allows a page to restrict the origins
which can provide specific types of content. For example, a
CSP might state that a page can only load JavaScript from

https://a.com, and CSS from https://b.com. A CSP
is expressed as a server-provided HTTP response header; the
CSP is enforced by the browser. CSPs are useful for preventing
cross-site scripting attacks, but require a page to be able to
explicitly shard content across domains. As discussed in the
last paragraph, Veil can enable sharding at the cost of reduced
security.

VIII. RELATED WORK

To minimize information leakage via RAM artifacts, appli-
cations can use best practices like pinning sensitive memory
pages, and avoiding excessive copying of secret data [23].
Operating systems and language runtimes can also scrub
deallocated memory as quickly as possible [11]. Web browsers
do not expose low-level OS interfaces to JavaScript code, so
privacy-preserving sites cannot directly access raw memory for
the purposes of secure deallocation or pinning. Determining
the best way to expose raw memory to JavaScript is an open
research problem, given the baroque nature of the same-origin
policy, and the fact that the browser itself may contend with
JavaScript code for exclusive access to a memory page (e.g.,
to implement garbage collection or tab discarding [50]).

An OS can protect RAM artifacts by encrypting the swap
space or the entire file system [8], [56], [76]. Veil’s content
mutation and DOM hiding allow Veil to protect RAM artifacts
even when a browser does not run atop an encrypted storage
layer. Content mutation obviously does not provide a crypto-
graphically strong defense, but DOM hiding allows a Veil site
to avoid sending any site-specific, greppable content to a client
browser.

CleanOS [66] is a smartphone OS that protects sensitive
data when mobile devices are lost or stolen. CleanOS defines
sensitive data objects (SDOs) as Java objects and files that
contain private user data. CleanOS observes which SDOs are
not actively being used by an application, and encrypts them;
the key is then sent to the cloud, deleted from the smartphone,
and only retrieved when the SDOs become active again. SDOs
could potentially be used as a building block for private
browsing. However, SDOs are insufficient for implementing
blinded references unless the SDO abstraction is spread beyond
the managed runtime to the entire OS.

Lacuna [17] implements private sessions by running appli-
cations inside of VMs. Those VMs execute atop the Lacuna
hypervisor and a modified Linux host kernel. The hypervisor
and the host kernel collectively implement “ephemeral” IO
channels. These encrypted channels allow VMs to communi-
cate with hardware or small pieces of trusted code, but only
the endpoints can access raw data—user-mode host processes
and the majority of the host kernel can only see encrypted
data. Lacuna also encrypts swap memory. Upon VM termi-
nation, Lacuna zeros the VM’s RAM space and discards the
ephemeral session keys. PrivExec [47] is similar to Lacuna,
but is implemented as an OS service instead of a hypervisor.
Lacuna and PrivExec provide stronger forensic deniability than
Veil. However, these systems force layperson end-users to
install and configure a special runtime; furthermore, private
applications cannot persist data across sessions because keys
are ephemeral.

UCognito [74] exposes a sandboxed file system to a private
browsing session. The sandboxed file system resides atop the

13

normal one, absorbing writes made during private browsing.
When the browsing session terminates, UCognito discards
the writes. Like PrivExec and Lacuna, UCognito requires a
modified client-side software stack. UCognito also does not
protect against information leakage via the non-sandboxed
parts of the host OS. For example, unmodified RAM artifacts
may page to the native swap file; DNS requests are exposed
to the host’s name resolution subsystem.

Collaborative browsing frameworks [34], [52] allow mul-
tiple users with different browsers to simultaneously interact
with a shared view of a web page. Like these frameworks,
Veil’s DOM hiding mode has to synchronize the GUI inputs
and rendering activity that belong to a canonical version of a
page. However, Veil only needs to support one remote viewer.
More importantly, Veil’s DOM hiding mode only exposes the
client browser to generic JavaScript event handlers, as well
as a bitmap display; in contrast, prior collaborative browsing
frameworks replicate a site-specific, canonical DOM tree on
each client browser. Prior frameworks also do not use blinding
servers to hide information from client-side, name-centric
interfaces like the DNS cache.

IX. CONCLUSIONS

Veil is the first web framework that allows developers to
implement private-session semantics for their pages. Using the
Veil compiler, developers rewrite pages so that all page content
is hosted by blinding servers. The blinding servers provide
name indirection, preventing sensitive information from leak-
ing to client-side, name-based system interfaces. The blinding
servers mutate content, making object fingerprinting more
difficult; rewritten pages also automatically encrypt client-side
persistent storage, and actively walk the heap to reduce the
likelihood that in-memory RAM artifacts will swap to disk in
cleartext form. In the extreme, Veil transforms a page into a
thin client which does not include any page-specific, greppable
RAM artifacts. Veil automates much of the effort that is needed
to port a page to Veil, making it easier for web developers to
improve the privacy protections of their applications.

REFERENCES

[1] A. Hidayat, “PhantomJS: Full web stack—No browser required,” 2017,
http://phantomjs.org/.

[2] G. Aggarwal, E. Burzstein, C. Jackson, and D. Boneh, “An Analysis
of Private Browsing Modes in Modern Browsers,” In Proceedings of
USENIX Security, Washington, DC, August 2010.

[3] D. Akhawe, P. Saxena, and D. Song, “Privilege Separation in HTML5
Applications,” In Proceedings of USENIX Security, Bellevue, WA,
August 2012.

[4] Angular.js, “Angular: A Superheroic JavaScript MVW Framework,”
https://angularjs.org/, 2014.

[5] Apache Software Foundation, “ab: Apache HTTP Server Benchmarking
Tool,” https://httpd.apache.org/docs/2.4/programs/ab.html, 2017.

[6] Backbone, “Backbone.js,” http://backbonejs.org/, 2017.
[7] B. Biggio, G. Fumera, I. Pillai, and F. Roli, “A Survey and Experimental

Evaluation of Image Spam Filtering Techniques,” Pattern Recognition
Letters, vol. 32, no. 10, July 2011.

[8] M. Blaze, “A Cryptographic File System for Unix,” In Proceedings of
CCS, Fairfax, VA, November 1993.

[9] Blue Spire Inc., “Aurelia,” 2017, http://aurelia.io/.
[10] A. Buell, “Linux Framebuffer HOWTO,” August 5, 2010, http://www.

tldp.org/HOWTO/html single/Framebuffer-HOWTO/#AEN134.

[11] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum, “Shredding Your
Garbage: Reducing Data Lifetime Through Secure Deallocation,” In
Proceedings of USENIX Security, Baltimore, MD, August 2005.

[12] CoffeeScript, “CoffeeScript: A Little Language that Compiles to
JavaScript,” October 26, 2017, http://coffeescript.org/.

[13] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” RFC 4627 (Draft Standard), July 2006.

[14] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and
Precise In-Browser JavaScript Malware Detection,” In Proceedings of
USENIX Security, San Francisco, CA, August 2011.

[15] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” In Proceedings of USENIX Security, San
Diego, CA, August 2004.

[16] DuckDuckGo, “Take back your privacy! Switch to the search engine
that doesn’t track you.” 2017, https://duckduckgo.com/about.

[17] A. Dunn, M. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu, V. Shmatikov,
and E. Witchel, “Eternal Sunshine of the Spotless Machine: Protecting
Privacy with Ephemeral Channels,” In Proceedings of OSDI, Vancouver,
BC, Canada, November 2010.

[18] Enigma, “Secure Data and Protect Privacy Without Compromising
Functionality,” 2015, https://www.media.mit.edu/projects/enigma.

[19] E. Felten and M. Schneider, “Timing Attacks on Web Privacy,” In
Proceedings of CCS, Athens, Greece, November 2000.

[20] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing Web La-
tency: The Virtue of Gentle Aggression,” In Proceedings of SIGCOMM,
August 2013.

[21] Google, “PageSpeed Module Documentation: Sprite Images,”
2014, https://developers.google.com/speed/pagespeed/module/
filter-image-sprite.

[22] ——, “Network Analysis Reference,” 2017, https://developers.google.
com/web/tools/chrome-devtools/network-performance/reference.

[23] K. Harrison and S. Xu, “Protecting Cryptographic Keys From Memory
Disclosure Attacks,” In Proceedings of DSN, Edinburgh, UK, June 2007.

[24] M. Heiderich, E. Nava, G. Heyes, and D. Lindsay, Web Application
Obfuscation. Syngress, 2010.

[25] A. Hidayat, “Esprima: ECMAScript Parsing Infrastructure for Multi-
purpose Analysis,” 2017, https://github.com/ariya/esprima.

[26] L. Ingram, “TreeHouse,” December 2012, https://github.com/lawnsea/
TreeHouse.

[27] L. Ingram and M. Walfish, “TreeHouse: JavaScript Sandboxes to Help
Web Developers Help Themselves,” In Proceedings of USENIX ATC,
Boston, MA, June 2012.

[28] D. Isacsson, “Microsoft Edge’s Incognito Mode Isn’t So Incognito,”
February 1, 2016, Digital Trends. https://www.digitaltrends.com/web/
microsoft-edge-security-flaws-in-incognito/.

[29] A. Janc and L. Olejnik, “Feasibility and Real-World Implications
of Web Browser History Detection,” In Proceedings of the Web 2.0
Security and Privacy Workshop, Oakland, CA, May 2010.

[30] KeyCDN, “Domain Sharding,” August 19, 2016, https://www.keycdn.
com/support/domain-sharding/.

[31] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing Webpages Rendered on
Your Browser by Exploiting GPU Vulnerabilities,” In Proceedings of
IEEE Symposium on Security and Privacy, San Jose, CA, May 2014.

[32] B. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi, “Verifying
Web Browser Extensions’ Compliance with Private-Browsing Mode,” In
Proceedings of ESORICS, Egham, United Kingdom, September 2013.

[33] D. Litzenberger, “PyCrypto: The Python Cryptography Toolkit,” June
23, 2014, https://github.com/dlitz/pycrypto.

[34] D. Lowet and D. Goergen, “Co-Browsing Dynamic Web Pages,” In
Proceedings of WWW, Madrid, Spain, April 2009.

[35] Magnet Forensics, “How Does Chrome’s ”Incognito” Mode
Affect Digital Forensics?” http://www.magnetforensics.com/
how-does-chromes-incognito-mode-affect-digital-forensics/, August 6,
2013.

[36] Mandiant, “Mandiant Redline Users Guide,” 2012, https://dl.mandiant.
com/EE/library/Redline1.7 UserGuide.pdf.

14

[37] L. Masinter, “The “data” URL scheme,” Network Working Group, RFC
2397, Aug. 1998.

[38] Meteor Development Group, “Meteor: The Fastest Way to Build
JavaScript Apps,” 2017, https://www.meteor.com/.

[39] J. Mickens, “Silo: Exploiting JavaScript and DOM Storage for Faster
Page Loads,” In Proceedings of USENIX WebApps, Boston, MA, June
2010.

[40] J. Mickens, J. Elson, and J. Howell, “Mugshot: Deterministic Capture
and Replay for JavaScript Applications,” In Proceedings of NSDI, April
2010.

[41] J. Mickens and M. Finifter, “Jigsaw: Efficient, Low-effort Mashup
Isolation,” In Proceedings of USENIX WebApps, Boston, MA, June
2012.

[42] Monkeys, “MonkeyTestJS: Automated Functional Testing for Front-end
Web Development,” 2017, http://monkeytestjs.io/.

[43] Mozilla, “Content Security Policy (CSP),” November 20, 2017,
mozilla Developer Network. https://developer.mozilla.org/en-US/docs/
Web/HTTP/CSP.

[44] ——, “Documentation: tabs.captureVisibleTab(),” 2017,
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/
tabs/captureVisibleTab.

[45] M. Nielsen, “Clickmonkey,” 2017, https://www.npmjs.com/package/
clickmonkey.

[46] D. Ohana and N. Shashidhar, “Do Private and Portable Web Browsers
Leave Incriminating Evidence?” In Proceedings of the International
Workshop on Cyber Crime, San Francisco, CA, May 2013.

[47] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda, “PrivExec:
Private Execution as an Operating System Service,” In Proceedings of
IEEE Symposium on Security and Privacy, San Francisco, CA, May
2013.

[48] OpenCV, “Open Source Computer Vision Library,” 2017, https://
opencv.org/.

[49] E. Orion, “Tor popularity leaps after snooping revelations,” August 30,
2013, The Inquirer. http://www.theinquirer.net/inquirer/news/2291758/
tor-popularity-leaps-after-snooping-revelations.

[50] A. Osmani, “Tab Discarding in Chrome: A Memory-Saving Exper-
iment,” September 2015, Google Developer Blog. https://developers.
google.com/web/updates/2015/09/tab-discarding.

[51] D. Parys, “How to Safeguard Your Site with HTML5 Sand-
box,” Microsoft Developer Network. http://msdn.microsoft.com/en-us/
hh563496.aspx, 2015.

[52] S. Pongelli, “Jigsaw: An Infrastructure for Cross-device Mashups,” ETH
Zurich, Master’s thesis, November 6, 2013.

[53] Priv.io, “Priv.io homepage,” 2015, https://priv.io/.
[54] Priv.ly, “Change the Way Your Browser Works: Share Priv(ate).ly,”

2017, https://priv.ly/.
[55] Progress Software, “Kendo UI for jQuery,” https://docs.telerik.com/

kendo-ui/, 2017.
[56] N. Provos, “Encrypting Virtual Memory,” In Proceedings of USENIX

Security, Denver, CO, August 2000.
[57] L. Richardson, “Beautiful Soup: A Python Parser for HTML,” 2017,

http://www.crummy.com/software/BeautifulSoup/.
[58] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-

cation and routing for large-scale peer-to-peer systems,” In Proceedings
of IFIP/ACM Middleware, Heidelberg, Germany, November 2001.

[59] J. Ruderman, “Same-origin Policy,” Mozilla Developer Network. https:
//developer.mozilla.org/en-US/docs/Web/Security/Same-origin policy,
August 1, 2014.

[60] Sahi, “Sahi Pro: The Tester’s Automation Tool,” 2017, http://sahipro.
com/.

[61] SeleniumHQ, “Selenium: Browser Automation,” 2017, http://www.
seleniumhq.org/.

[62] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” In Proceedings of SIGCOMM, San Diego, CA, August 2001.

[63] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanabhan, and L. Qiu,
“Statistical Identification of Encrypted Web Browsing Traffic,” In Pro-

ceedings of IEEE Symposium on Security and Privacy, Berkeley, CA,
May 2002.

[64] Y. Suzuki, “Escodegen: ECMAScript Code Generator,” 2017, https://
github.com/Constellation/escodegen.

[65] P. Szor, “Advanced Code Evolution Techniques and Computer Virus
Generator Kits,” InformIT. http://www.informit.com/articles/article.
aspx?p=366890&seqNum=6, March 25, 2006.

[66] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “CleanOS: Limiting Mobile Data Exposure with Idle Evic-
tion,” In Proceedings of OSDI, Hollywood, CA, October 2012.

[67] Tilde Inc., “Ember: A Framework for Creating Ambitious Web Appli-
cations,” https://emberjs.com/, 2017.

[68] Tor Project, “Tor Metrics: Performance,” https://metrics.torproject.org/
torperf.html, November 28, 2017.

[69] W3C Web Apps Working Group, “Web Storage: W3C Working Draft,”
http://www.w3.org/TR/webstorage/, April 19, 2016.

[70] ——, “Web Cryptography: W3C Working Draft,” January 26, 2017,
http://www.w3.org/TR/WebCryptoAPI/.

[71] Z. Weinberg, E. Chen, P. Jayaraman, and C. Jackson, “I Still Know
What You Visited Last Summer,” In Proceedings of IEEE Symposium
on Security and Privacy, Oakland, CA, May 2011.

[72] W. Wong and M. Stamp, “Hunting for metamorphic engines,” Journal
in Computer Virology and Hacking, vol. 2, no. 3, December 2006.

[73] C. Wright, S. Coull, and F. Monrose, “Traffic Morphing: An Efficient
Defense against Statistical Traffic Analysis,” In Proceedings of NDSS,
San Diego, CA, February 2009.

[74] M. Xu, Y.Jang, X. Xing, T. Kim, and W. Lee, “UCognito: Private
Browsing without Tears,” In Proceedings of CCS, Denver, CO, October
2015.

[75] N. Yorker, “The New Yorker SecureDrop,” 2017, https://projects.
newyorker.com/securedrop/.

[76] E. Zadok, I. Badulescu, and A. Shender, “Cryptfs: A Stackable Vn-
ode Level Encryption File System,” Technical Report CUCS-021-98,
University of California at Los Angeles, 1998.

15

