
Riverbed: Enforcing User-defined Privacy Constraints in Distributed Web Services

Frank Wang
MIT CSAIL

Ronny Ko, James Mickens
Harvard University

Abstract
Riverbed is a new framework for building privacy-respecting
web services. Using a simple policy language, users define
restrictions on how a remote service can process and store
sensitive data. A transparent Riverbed proxy sits between a
user’s front-end client (e.g., a web browser) and the back-
end server code. The back-end code remotely attests to the
proxy, demonstrating that the code respects user policies; in
particular, the server code attests that it executes within a
Riverbed-compatible managed runtime that uses IFC to en-
force user policies. If attestation succeeds, the proxy releases
the user’s data, tagging it with the user-defined policies. On
the server-side, the Riverbed runtime places all data with com-
patible policies into the same universe (i.e., the same isolated
instance of the full web service). The universe mechanism
allows Riverbed to work with unmodified, legacy software;
unlike prior IFC systems, Riverbed does not require devel-
opers to reason about security lattices, or manually annotate
code with labels. Riverbed imposes only modest performance
overheads, with worst-case slowdowns of 10% for several
real applications.

1 INTRODUCTION

In a web service, a client like a desktop browser or smart-
phone app interacts with datacenter machines. Although
smartphones and web browsers provide rich platforms for
computation, the core application state typically resides in
cloud storage. This state accrues much of its value from server-
side computations that involve no participation (or explicit
consent) from end-user devices.

By running the bulk of an application atop VMs in a com-
modity cloud, developers receive two benefits. First, develop-
ers shift the burden of server administration to professional
datacenter operators. Second, developers gain access to scale-
out resources that vastly exceed those that are available to
a single user device. Scale-out storage allows developers to
co-locate large amounts of data from multiple users; scale-out
computation allows developers to process the co-located data
for the benefit of users (e.g., by providing tailored search
results) and the benefit of the application (e.g., by providing
targeted advertising).

1.1 A Loss of User Control
Unfortunately, there is a disadvantage to migrating applica-
tion code and user data from a user’s local machine to a
remote datacenter server: the user loses control over where
her data is stored, how it is computed upon, and how the data
(and its derivatives) are shared with other services. Users are
increasingly aware of the risks associated with unauthorized
data leakage [11, 62, 82], and some governments have begun
to mandate that online services provide users with more con-
trol over how their data is processed. For example, in 2016,
the EU passed the General Data Protection Regulation [28].
Articles 6, 7, and 8 of the GDPR state that users must give con-
sent for their data to be accessed. Article 17 defines a user’s
right to request her data to be deleted; Article 32 requires
a company to implement “appropriate” security measures
for data-handling pipelines. Unfortunately, requirements like
these lack strong definitions and enforcement mechanisms at
the systems level. Laws like GDPR provide little technical
guidance to a developer who wants to comply with the laws
while still providing the sophisticated applications that users
enjoy.

The research community has proposed information flow
control (IFC) as a way to constrain how sensitive data spreads
throughout a complex system [35, 42]. IFC assigns labels to
program variables or OS-level resources like processes and
pipes; given a partial ordering which defines the desired secu-
rity relationships between labels, an IFC system can enforce
rich properties involving data secrecy and integrity. Unfortu-
nately, traditional IFC is too burdensome to use in modern,
large-scale web services. The reason is that creating and main-
taining a partial ordering of labels is too difficult—the average
programmer or end-user struggles to reason about data safety
via the abstraction of fine-grained label hierarchies. As a re-
sult, no popular, large-scale web service uses IFC to restrict
how sensitive data is processed and shared.

1.2 Our Solution: Riverbed
In this paper, we introduce Riverbed, a distributed web plat-
form for safeguarding the privacy of user data. Riverbed pro-
vides benefits to both web developers and end users. To web
developers, Riverbed provides a practical IFC system which

Riverbed
web proxy

Browser

HTTP POST upload.html
<Sensitive user data>

User-defined
Riverbed

Web content

Riverbed managed
runtime (IFC)

IO

Application code

IO devices
HTTP POST upload.html

<Sensitive user data>
+

HTTP

Trusted hardware

x.com
policy

U
n

iverses

response

policies

x.com
policy

y.com
policy

z.com
policy

(x.com)

Figure 1: Riverbed’s architecture. The user’s client device is on the
left, and the web service is on the right. Unmodified components are
white; modified or new components are grey.

allows developers to easily “bolt on” stronger security poli-
cies for complex applications written in standard managed
languages. To end users, Riverbed provides a straightforward
mechanism to verify that server-side code is running within a
privacy-preserving environment.

Figure 1 describes Riverbed’s architecture. For each
Riverbed web service, a user defines an information flow
policy using simple, human-understandable constraints like
“do not save my data to persistent storage” or “my data may
only be sent over the network to x.com.” In the common
case, users employ predefined, templated policy files that are
designed by user advocacy groups like the EFF. When a user
generates an HTTP request, a web proxy on the user’s de-
vice transparently adds the appropriate data flow policy as a
special HTTP header.

Within a datacenter, Riverbed leverages the fact that many
services run atop managed runtimes like Python, .NET, or
the JVM. Riverbed modifies such a runtime to automatically
taint incoming HTTP data with the associated user policies.
As the application derives new data from tainted bytes, the
runtime ensures that the new data is also marked as tainted. If
the application tries to externalize data via the disk or the net-
work, the externalization is only allowed if it is permitted by
user policies. The Riverbed runtime terminates an application
process which attempts a disallowed externalization.

In Riverbed, application code (i.e., the code which the
managed runtime executes) is totally unaware that IFC is
occurring. Application developers have no way to read, write,
create, or destroy taints and data flow policies. The advantage
of this scheme is that it makes Riverbed compatible with
code that has not been explicitly annotated with traditional
IFC labels. However, different end users will likely define
incompatible data flow policies. As a result, policy-agnostic
code would quickly generate a policy violation for some
subset of users; Riverbed would then terminate the application.
To avoid this problem, Riverbed spawns multiple, lightweight
copies of the back-end service, one for each set of users

who share the same data flow policies. We call each copy a
universe. Since users in the same universe allow the same
types of data manipulations, any policy violations indicate
true problems with the application (e.g., the application tried
to transmit sensitive data to a server that was not whitelisted
by the inhabitants of the universe).

Before a user’s Riverbed proxy sends data to a server, the
proxy employs remote attestation [9, 15] to verify that the
server is running an IFC-enforcing Riverbed runtime. Impor-
tantly, a trusted server will perform next-hop attestation—the
server will not transmit sensitive data to another network
endpoint unless that endpoint is an attested Riverbed run-
time whose TLS certificate name is explicitly whitelisted by
the user’s data flow policy. In this manner, Riverbed enables
controlled data sharing between machines that span different
domains.

1.3 Our Contributions
To the best of our knowledge, Riverbed is the first distributed
IFC framework which is practical enough to support large-
scale, feature-rich web services that are written in general-
purpose managed languages. Riverbed preserves the tradi-
tional advantages of cloud-based applications, allowing devel-
opers to offload administrative tasks and leverage scale-out
resources. However, Riverbed’s universe mechanism, coupled
with a simple policy language, provides users with understand-
able, enforceable abstractions for controlling how datacenters
manipulate sensitive data. Riverbed makes it easier for devel-
opers to comply with laws like GDPR—users give explicit
consent for data access via Riverbed policies, with server-side
universes constraining how user data may be processed, and
where its derivatives can be stored.

We have ported several non-trivial applications to Riverbed,
and written data flow policies for those applications. Our
experiments show that Riverbed enforces policies with worst-
case end-to-end overheads of 10%. Riverbed also supports
legacy code with little or no developer intervention, making
it easy for well-intentioned (but average-skill) developers to
write services that respect user privacy.

2 RELATED WORK

In this section, we compare Riverbed to representative in-
stances of prior IFC systems. At a high level, Riverbed’s
innovation is the leveraging of universes and human-
understandable, user-defined policies to enforce data flow con-
straints in IFC-unaware programs. Riverbed enforces these
constraints without requiring developers to add security anno-
tations to source code.

2.1 Explicit Labeling
In a classic IFC system, developers explicitly label program
state, and construct a lattice which defines the ways in which
differently-labeled state can interact. Roughly speaking, a
program is composed of assignment statements; the IFC sys-
tem only allows a particular assignment if all of the policies

involving righthand objects are compatible with the policies
of the lefthand side.

IFC-visible assignments can be defined at various levels
of granularity. For example, Jif [48], Fabric [45], and similar
frameworks [14, 29, 79, 80] modify the compiler and run-
time for a managed language, tracking information flow at
the granularity of individual program variables. In contrast,
frameworks like Thoth [25], Flume [39], Camflow [50], and
DStar [81] modify the OS, associating labels with processes,
IO channels, and OS-visible objects like files. Taint can be
tracked at even high levels of abstraction, e.g., at the granu-
larity of inputs and outputs to MapReduce tasks [66].

All of these approaches require developers to reason about
a complex security lattice which captures relationships be-
tween a large number of privileges and privilege-using entities
like users and groups. Porting a complex legacy application
to such a framework would be prohibitively expensive, and to
the best of our knowledge, there is no large-scale, deployed
system that was written from scratch using IFC with explicit
labeling. Developer-specified labels are also a poor fit for our
problem domain of user-specified access policies.

Tracking data flows at too-high levels of abstraction can
introduce problems of overtainting—to avoid false negatives,
systems must often use pessimistic assumptions about how
outputs should be tainted. For different reasons, overtainting
is also a challenge for ISA-level taint tracking [27, 65], For ex-
ample, if taint is accidentally assigned to %ebp or %esp, then
taint will rapidly propagate throughout the system, yielding
many false positives [67]. To avoid these problems, Riverbed
taints at the managed runtime level, a level which does not ex-
pose raw pointers, and defines data types with less ambiguous
tainting semantics.

In Jeeves [7, 78], a developer explicitly associates each
sensitive data object with a high-confidentiality value, a low-
confidentiality value, and a policy which describes the con-
texts in which a particular value should be exposed. An ob-
ject’s value is symbolic until the object is passed to an output
sink, at which point Jeeves uses the context of the sink to
assign a concrete value to the object. Riverbed avoids the
need for developers to label objects with policies or concrete
values with different fidelities; via the universe mechanism,
Riverbed applications always compute on high-fidelity data
while satisfying user-defined constraints on data propagation.

2.2 Implicit Labeling
Some IFC systems use predefined taint sources and IFC poli-
cies. For example, TaintDroid [26] uses a modified JVM to
track information flows in Android applications. TaintDroid
predefines a group of sensors and databases that generate sen-
sitive data; examples of these sources include a smartphone’s
GPS unit and SMS database. The only sink of interest is
the network, because TaintDroid’s only goal is to prevent
sensitive information from leaking via the network. Because
TaintDroid uses a fixed, application-agnostic set of IFC rules,

TaintDroid works on unmodified applications. Riverbed also
works on unmodified applications. However, TaintDroid oper-
ates on a single-user device, whereas Riverbed targets a web
service that has many users, each of whom may have unique
preferences for how their data should be used. Thus, Riverbed
requires users (but not developers or applications) to explic-
itly define information flow policies. Riverbed also requires
the universe mechanism (§4.4) to prevent the mingling of data
from users with incompatible flow policies.

2.3 Formal Verification
IronClad [33] servers, like Riverbed servers, use remote attes-
tation to inform clients about the server-side software stack. In
Ironclad, server-side code is written in Dafny [41], a language
that is amenable to static verification of functional correctness.
Nothing prevents Riverbed from executing formally-verified
programs; however, Riverbed’s emphasis on running complex
code in arbitrary managed languages means that Riverbed is
generally unable to provide formal assurances about server-
side code.

3 THREAT MODEL

Riverbed assumes that developers want to enforce user-
defined privacy policies, but are loathe to refactor code to do
so. Thus, Riverbed assumes that server-side code is weakly
adversarial: poorly-designed applications may unintention-
ally try to leak data via explicit flows, but developers will not
intentionally write code that attempts to surreptitiously leak
data, e.g., via implicit flows, or via targeted attacks on the
taint-tracking managed runtime. Riverbed is compatible with
mechanisms for tracking implicit flows [5, 6, 10, 61], but our
Riverbed prototype does not track them for several reasons.
One reason is that the punitive aspects of laws like the GDPR
disincentivize companies from writing code that intentionally
subverts compliance mechanisms like Riverbed. Furthermore,
in many common programming languages, mechanisms for
detecting implicit flows have undesirable properties like flag-
ging some well-behaved programs as malicious [5], or re-
quiring annotations from developers [6]. Riverbed strives for
compatibility with legacy, non-annotated code written in pop-
ular languages.

A datacenter operator has physical access to servers, which
enables direct manipulation of server RAM. So, our current
Riverbed prototype assumes that datacenter operators are
trusted. To ease this assumption, Riverbed could leverage a
hardware-enforced isolation mechanism like SGX [20, 37].
However, SGX places limits on the memory size of secure
applications. SGX also requires the applications to run in ring
3, forcing the code to rely on an untrusted OS in ring 0 to per-
form IO; the result is a large number of context switches for
applications that perform many IOs [8]. Riverbed strives to
be compatible with complex applications that issue frequent
IOs. Thus, our Riverbed prototype eschews mechanisms like
SGX, and must be content with not protecting against actively-

malicious datacenter operators. To implement remote attesta-
tion, Riverbed does rely on tamper-resistant, server-side TPM
hardware (§4.3), but TPMs do not protect against physical
attacks on the rest of the server hardware.

Riverbed assumes that the entire client-side is trusted, with
the exception of the web content in a particular page. Buggy
or malicious content may try to disclose too much informa-
tion to a server. However, Riverbed ensures that whatever
data is sent will be properly tagged. Since Riverbed uses
TLS to authenticate network endpoints, the HTTPS certificate
infrastructure must be trusted.

On a server, Riverbed’s TCB consists of a taint-tracking
managed runtime, a reverse proxy that forwards requests to
the appropriate universes (§4.4), the TPM hardware that pro-
vides the root of trust for attestation, and a daemon which
servers use to attest to clients. We make standard crypto-
graphic assumptions about the strength of the ciphers and
hash functions used by the attestation protocol. Between the
TPM hardware and the managed runtime are a boot loader, a
hypervisor, and other systems software. Each end-user can
choose a different collection of intermediate software to trust.
A user’s preferences are expressed in her policies (§4.2), so
that Riverbed’s client-side proxy can refuse to disclose data
to untrusted server-side systems code.

4 DESIGN

Figure 1 provides a high-level overview of the Riverbed ar-
chitecture. In this section, we provide more details on how
users specify their policies, and how Riverbed enforces those
polices on the server-side.

4.1 Riverbed-amenable Services
Riverbed is best-suited for certain types of web services.

• Services with per-user silos for application state,
and no cross-user sharing: Examples include back-up
services like Ionic [51], and private note-taking apps
like Turtl [47]. Riverbed prevents information leak-
age between per-user silos (although an individual silo
may span multiple server-side hostnames and cloud
providers).

• Services that silo user data according to explicitly-
defined group affinities: For example, a social network-
ing site can create a universe for the state belonging to
a corporation’s private group. The corporation’s users
map to the same Riverbed user (§4.2), with no data flows
between different corporations. Financial analysis sites
and email services can use this decomposition to isolate
data belonging to a particular business or social group.

• Services which aggregate unaffiliated users by
shared polices: For example, in a news site, users can
define policies that impact whether the site may aggre-
gate user data for targeted advertising. Riverbed places
users with equivalent policies into the same universe,
ensuring that the site respects each user’s preferences.

USER-ID: ALICE
AGGREGATION: False
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
ALLOW-TO-NETWORK: y.com
TRUSTED-SERVER-STACK: {

83145c082bbf608989f05e85c3c211f83,
c8cd7ac93cab2b94f65a5b2de5709767f,

...
590f01d8d18b1141988ee1975b3ce3b30

}

Figure 2: An example of a Riverbed policy. For simplicity, we elide
graph-based contextual attestation predicates (§4.3).

Child policies (§4.2) can whitelist communication between
server-side endpoints with otherwise incompatible policies.
However, such whitelisting is easier when the server-side
application consists of small, well-defined components, so
that whitelisting individual components has well-understood
security implications.

4.2 Expressing Policies
Figure 2 provides an example of a Riverbed policy. A policy
consists of several parts, as described below.

The USER-ID field describes the owner of the policy. User
ids only need to be unique within the context of a particular
web service. Riverbed is agnostic about the mechanism that a
service uses to authenticate users and log them into the service.
However, Riverbed’s server-side reverse proxy must know
who owns the policy that is associated with each user request,
so that the proxy can forward the request to the appropriate
universe (§4.4).

Since Riverbed is agnostic about a service’s login mecha-
nism, a USER-ID field could actually be bound to a group of
users. In this scenario, the users in the group would have differ-
ent service-specific usernames, but share the same USER-ID
field in their Riverbed policies. From Riverbed’s perspective,
the sensitive data of each individual user would all belong to
a single logical Riverbed user.

The AGGREGATION flag specifies whether a user’s data
can be involved in server computations that include the data
of other users. For example, suppose that a server wishes to
add two numbers, each of which was derived from the data of
a different user. If both users allow aggregation, Riverbed can
execute the addition in the same universe. If one or both users
disallow aggregation, then Riverbed must create separate uni-
verses for the two users. The AGGREGATION field specifies
a yes/no policy—either arbitrary aggregation is allowed, or
all aggregation is disallowed.

The binary PERSISTENT-STORAGE flag indicates
whether server-side code can write a user’s data to persis-
tent storage. If so, the user expects that when the data is read
again by the server-side application, the application will treat
the data as tainted. A Riverbed managed runtime terminates

applications that try to write tainted data to persistent storage,
but lack the appropriate permissions.

A policy can optionally include an email address that be-
longs to the policy owner. If a Riverbed managed runtime
must terminate policy-violating code, Riverbed can email the
policy owner, informing the user about the thwarted policy
breach. The user can then complain to the service operator,
or take another corrective action.

The ALLOW-TO-NETWORK field is optional, and allows
a user to whitelist network endpoints to which user data
may flow. Endpoints are represented by hostnames; each
whitelisted hostname is expected to have a valid X.509 cer-
tificate, e.g., as used by HTTPS. Before a Riverbed managed
runtime allows tainted data to externalize via a socket, the run-
time will check whether the remote endpoint is whitelisted by
the tainted data’s policy. If so, the runtime forces the remote
endpoint to attest its software stack. If that stack is whitelisted
by the policy, the runtime allows the transfer to complete.
Otherwise, the runtime terminates the application. Note that
Riverbed allows untainted data to be sent to arbitrary remote
servers.

The final item in a policy is typically one or more
TRUSTED-SERVER-STACK entries. Each trusted stack is
represented by a list of hash values; see Section 4.3 for more
details about how these hash values are generated by servers,
and later consumed by the attestation protocol.

As discussed in Sections 4.3 and 4.6, a client-side proxy
leverages attestation to validate the server-side software
stack up to, but not including, the application-defined man-
aged code. Once the proxy determines that Riverbed’s taint-
tracking managed runtime is executing on the server, the
proxy will trust the runtime to enforce the policies described
earlier in this section. However, the policies from earlier in
this section only enable aggregation at a binary granularity
(i.e., “allowed” or “disallowed”); a universe which disallows
aggregation can never permit data to flow to a universe which
does allow aggregation. This restriction prevents several use-
ful types of selective aggregation. For example, two email
servers in separate no-aggregate universes could ideally send
emails to a trusted spam filter application which trains across
all inboxes, and then returns a filter to each universe. To allow
such aggregation by explicitly trusted components, Riverbed
policies can decorate an ALLOW-TO-NETWORK field with
a child policy. The child policy can override settings in the
parent policy, allowing aggregation to occur at the endpoint.
The child policy must specify a full-stack attestation record,
to allow Riverbed to verify the identity of a particular type of
trusted application-level code (e.g., SpamAssassin [2]). Data
received from a trusted aggregator is marked with the taint
descriptor of the receiving universe.

Riverbed allows a user to define her own policy for each
web service that she uses. However, some policies may be fun-
damentally incompatible with certain services. As a trivial ex-
ample, a Dropbox-like service that provides online storage is

intrinsically incompatible with a PERSISTENT-STORAGE:
False policy.1 In the common case, we expect users to rely
on trusted outside authorities, called policy generators, to
define reasonable policies for sites. For example, consider
a web site that wants to deliver targeted advertising via a
third-party ad network evil-ads.com. A consumer advo-
cacy group can advise users to avoid policies that whitelist
evil-ads.com. Consumer advocacy groups can also pub-
lish suggested policy files for particular sites, based on re-
search about what reasonable permissions for those sites
should be.

Note that modern web browsing is already influenced by a
variety of curated policies. For example, Google maintains a
set of known-malicious URLs; multiple browser types con-
sult this list to prevent accidental user navigation to attacker-
controlled pages [31]. As another example, ad blockers [18]
interpose on a page load, blocking content from sites deemed
objectionable by the creators of the ad blocker. Riverbed
introduces a new kind of web policy, but does not shatter
prior expectations that web browsing must be an unmediated
experience.

4.3 Server Attestation
The client-side proxy shepherds the interactions between the
client and server portions of a Riverbed application. In this
section, we describe the proxy in the context of a traditional
web service whose client/server protocol is HTTP. Proxies
are easily written for other protocols like SMTP (§4.5). We
assume that the reader understands the basics of remote attes-
tation, but readers who lack this knowledge can refer to the
appendix for the necessary background material.

A user configures her browser to use the Riverbed proxy to
connect to the Internet. At start-up time, the proxy searches
a well-known directory for the user’s policy files; the proxy
assumes that each filename corresponds to the hostname in a
server-side X.509 certificate (e.g., x.com). When the proxy
receives an HTTP request that is destined for x.com, the
proxy opens a TLS connection to x.com’s server, and forces
that server to remotely attest its software stack. If the attes-
tation succeeds, the proxy issues the HTTP request that trig-
gered the attestation. Later, upon receiving a response from
the server, the proxy forwards the response to the browser. By
default, the proxy assumes that an attestation is valid for one
day before a new attestation is necessary.

Riverbed strives to be practical, but traditional remote at-
testation [9, 15] has some unfortunate practical limitations.
Consider the following challenges.

Server-side ambiguity: In traditional attestation, servers es-
tablish trust with clients by providing an explicit list of server-
side software components. However, servers may not wish
to share a perfectly-accurate view of their local software en-
vironment. For example, servers might be concerned that a

1. . . unless the service is intentionally exporting a RAM-only storage
abstraction.

malicious client will launch zero-day attacks against vulnera-
ble (and precisely-identified) server components.
Potentially safe code: A server-side component may be in-
trinsically secure, but currently unvetted by the creator of
a user’s Riverbed policies. Alternatively, a server-side exe-
cutable might be intrinsically insecure, but perfectly safe to
run if launched within a sandboxed environment like a virtual
machine. Traditional attestation protocols are ill-suited to han-
dle cases like these, since trust decisions are binary—a hash
value in an attestation message corresponds to a categorically
trusted component, or a categorically untrusted component.
Policy updating: A virtuous server administrator will be
diligent about applying the latest patches to server-side code.
If the user’s policy generator is not as diligent, then users will
reject legitimately trustworthy stacks as suspicious. Similarly,
if users are more aggressive about updating policies than
a server administrator, then out-of-date server-side stacks
will be legitimately rejected as untrustworthy, but the server
administrator will lack an immediate explanation for why.
Traditional attestation protocols focus on the cryptographic
aspects of client-server communication, but cannot resolve
these kinds of policy disputes.

Riverbed uses the Cobweb attestation system [74] to
handle these practical concerns. In traditional attestation, the
attestor sends a TPM-signed PCR[10] value, and a list of
<filename, filehash> tuples representing the objects that are
covered by the cumulative hash in PCR[10]. Cobweb allows
the attestor to augment the traditional attestation report with
a contextual graph that provides additional information about
the attestor’s software stack. For example, a contextual graph
might represent a process tree, where each vertex is a process
and each edge represents a parent/child fork() relationship.
An edge could also represent a dynamic information flow,
e.g., indicating that two processes have communicated via
IPC. Attestation verifiers specify policies as graph predicates
that look for desired structural properties in the contextual
graph or the regular attestation list of <filename, filehash>
tuples.

Riverbed uses contextual graphs, and policy specification
via graph predicates, to eliminate some of the practical diffi-
culties with traditional attestation. For example:

• If attestation fails (i.e., if a client-side Riverbed proxy
discovers that a graph predicate cannot be satisfied), the
proxy sends the failed predicate to the server. The server
can then initiate concrete remediating steps, e.g., by
updating software packages, or removing a blacklisted
application.

• A Riverbed server can also dispute the failure of a graph
predicate. For example, if a user’s proxy believes that
a particular server-side component is out-of-date, the
server can respond with a list of signed, vendor-supplied
updates for which the user’s proxy may be unaware. The
proxy can then ask the user’s policy generator for a new
policy.

USER-ID: Alice
AGGREGATION: True
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
TRUSTED-SERVER-STACK: S0

USER-ID: Bob
AGGREGATION: True
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
TRUSTED-SERVER-STACK: S0

USER-ID: Charlie
AGGREGATION: False
PERSISTENT-STORAGE: True
ALLOW-TO-NETWORK: x.com
TRUSTED-SERVER-STACK: S0

Riverbed managed
runtime (IFC)

IO

Application code

IO devices

Riverbed managed
runtime (IFC)

IO

Application code

IO devices

Universe 0

Universe 1

Physical server

Data policies

Figure 3: Alice and Bob have compatible policies, so Riverbed
maps them to the same universe. Charlie has an incompatible policy
because he disallows aggregation. Thus, Charlie must receive his
own universe.

• A user’s Riverbed policy can tolerate an unknown or nor-
mally untrusted server binary if that binary is launched
within a sandbox that isolates the component from other
components which the user does require to be trusted. To
provide confidence in the sandbox, the server’s contex-
tual graph should contain the fork()/exec() history
for the server, as well as the configuration files for the
sandbox environment. As a concrete example, suppose
that a server needs to run a telnet daemon to commu-
nicate with a legacy internal service. The telnet pro-
tocol is known to be insecure, but a Riverbed proxy can
trust the server’s Apache instance if the server uses a vir-
tual machine or a Docker container to isolate telnetd.

Riverbed also leverages Cobweb’s support for server-side
software ambiguity, but we refer the reader to the Cobweb
paper [74] for a discussion of how Cobweb implements this
feature.

4.4 Universes
Consider Alice, Bob, and Charlie, three Riverbed users whose
policies are shown in Figure 3. The policies of these users
are almost the same—they differ only with respect to the
AGGREGATION token. Alice and Bob allow aggregation, but
Charlie does not. How should Riverbed handle the data of
these users on the server-side?

Riverbed could optimistically assume that the server-side
application code will never try to aggregate Charlie’s data
with that of Alice or Bob. Riverbed executes the code
atop a taint-tracking runtime (§4.5), so Riverbed could syn-

chronously detect attempted violations of Charlie’s policy. Un-
fortunately, attempted violations are likely, since Riverbed ex-
ecutes unmodified applications that are unaware of Riverbed
policies. If a violation occurs, Riverbed would lack good
options for moving forward. Riverbed could permanently ter-
minate the application, which would prevent the disallowed
aggregation of Charlie’s data. However, all three users would
be locked out of the now-dead service. To avoid this outcome,
Riverbed could try to synchronously clone the application
at policy violation time, creating two different versions: one
for Alice and Bob, and another for Charlie. However, deter-
mining which pieces of in-memory and on-disk state should
belong in which clone is difficult without application-specific
knowledge; a primary goal of Riverbed is to enforce security
in a service-agnostic manner.

Riverbed’s solution emerges from the insight that Riverbed
does not need to run any code to determine whether a set of
policies might conflict. Instead, Riverbed can simply examine
the policies themselves. For example, if a policy does not
allow aggregation, then Riverbed can preemptively spawn a
separate copy of the service for the policy’s owner. Riverbed
can spawn this copy on-demand, upon receiving the first
request from the owner. Now consider a policy P that al-
lows aggregation and a particular set of storage and network
permissions (e.g., PERSISTENT-STORAGE: True and
ALLOW-TO-NETWORK: x.com). All users whose policies
match P can be placed in the same copy of the service.
Riverbed can spawn the copy upon receiving the first request
that is tagged with P.

We call each service copy a universe. To implement the
universe mechanism, Riverbed places a reverse proxy in front
of the actual servers which run application code. Clients send
their requests to the reverse proxy; the reverse proxy exam-
ines the policy in each request, spawns a new universe if
necessary, and then forwards the request to the appropriate
universe. Our Riverbed prototype instantiates each universe
component inside of a Docker [21] instance that contains a
taint-tracking runtime (§4.5) and the component-specific code
and data. Docker containers are much smaller than traditional
virtual machines since Docker virtualizes at the POSIX layer
instead of the hardware layer. As a result, creating, destroy-
ing, and suspending universes is fast (§6.4). Docker runs each
container atop a copy-on-write file system that belongs to the
host [24]. Thus, universes share the storage that is associated
with application code and other user-agnostic files.

Universes provide a final advantage: since all of the sen-
sitive data in a universe has the same policy, a universe’s
taint-tracking runtime only needs to associate a single logical
bit of taint with each object (“tainted” or “untainted”). If data
from all users resided in the same universe, the runtime would
have to associate each object with a value that represented a
specific taint pattern.

The relationship between the number of users and the num-
ber of universes is application-specific. Some web services

will specifically target a 1-1 mapping. For example, in a “pri-
vate Dropbox” service that implements confidential online
storage, users will naturally specify data policies that prevent
aggregation (and thus require a universe per user). In contrast,
social networking applications intrinsically derive their value
from the sharing of raw user data, and the extraction of inter-
esting cross-user patterns. For these applications, users must
allow aggregation (although the scope of aggregation can be
restricted using groups (§4.2)).

4.5 Taint Tracking

A managed language like Python, Go, or Java does not expose
raw pointers to applications, or allow those applications to
directly issue system calls. Instead, the language runtime acts
as a mediation layer, controlling how a program interacts with
the outside world. Like much of the prior work on dynamic
tainting [26, 34, 46, 13], Riverbed enforces information flow
control inside the managed runtime. Our Riverbed prototype
modifies PyPy [53], a state-of-the-art Python interpreter, to
extract Riverbed policies from incoming network data, and
assign taint to derived information.

PyPy translates Python source files to bytecodes. Those
bytecode are then interpreted. Riverbed adds taint-tracking
instrumentation to the interpreter, injecting propagation rules
that are similar to those of TaintDroid [26]. For example, in
a binary operation like ADD, the lefthand side of the assign-
ment receives the union of the taints of the righthand sides.
Assigning a constant value to a variable clears the taint of
the variable. If an array element is used as a righthand side,
the lefthand side receives the taint of both the array and the
index.

We call Riverbed’s modified Python runtime PyRB. If a
Python application tries to send tainted data to remote host
x.com, PyRB first checks whether externalization to x.com
is permitted by the tainted data’s policy. If so, PyRB forces
x.com to remotely attest its software stack; in this scenario,
PyRB acts as the client in the protocol from Section 4.3. If
x.com’s stack is trusted by the tainted data’s policy, PyRB al-
lows the data to flow to x.com. Otherwise, PyRB terminates
the application. Riverbed provides a standalone attestation
daemon that a server can use to respond to attestation requests.

PyRB must also taint incoming network data that was sent
by end-user clients like web browsers. To do so without re-
quiring modifications to legacy application code, PyRB as-
sumes two things. First, clients are assumed to use standard
network protocols like HTTP or SMTP. Second, PyRB as-
sumes that when clients send requests using those protocols,
clients embed Riverbed policies in a known way. Ensuring
the second property is easy if unmodified clients run atop
Riverbed proxies; for example, when an unmodified web
browser sends requests through a client-side Riverbed proxy,
the proxy will automatically embed Riverbed policies using
the Riverbed-policy HTTP header. Similarly, a client-

side SMTP proxy can attach Riverbed policies using a custom
SMTP command.

On the server-side, PyRB assumes that traffic intended for
well-known ports uses the associated well-known protocol.
Upon receiving a connection to such a port, PyRB reads the
initial bytes from the socket before passing those bytes to
the application. If the initial bytes cannot be parsed as the
expected protocol, PyRB forcibly terminates the connection.
Otherwise, if PyRB finds a Riverbed policy, PyRB taints the
socket bytes and then hands the tainted bytes to the higher-
level application code. If there is no policy attached to the
bytes, PyRB hands untainted bytes to the higher-level code.
Importantly, the application code is unaware of the tainting
process, and cannot read or write the taint labels.

If policies allow server-side code to write to persistent stor-
age, PyRB taints the files that the application writes. PyRB
does whole-file tainting, storing taint information in per-file
extended attributes [40]. PyRB prevents application code
from reading or writing those attributes. Whole-file taint-
ing minimizes the storage overhead for taints, but Riverbed is
compatible with taint-aware storage layers (§6.2) that perform
fine-grained tainting, e.g., at the level of individual database
rows; the use of such storage layers will minimize the likeli-
hood of overtainting.

When an application reads data from a tainted file, PyRB
taints the incoming bytes, preventing the application from
laundering taint through the file system. Note that, even
though a policy contains multiple constraints (§4.2), all of
the users within a universe share the same policy; thus, PyRB
only needs to associate a single logical bit with each Python
object (§4.4). PyRB does need to store one copy of the full
policy, so that the policy can be consulted when tainted data
reaches an output sink.

Managed languages sometimes offer “escape hatches” that
allow an application to directly interact with the unman-
aged world. For example, in Java, the JNI mechanism [49]
enables applications to invoke code written in native lan-
guages like C. In Python, interfaces like os.system() and
subprocess.call() allow managed code to spawn na-
tive binaries. A Riverbed runtime can use one of three strate-
gies to handle a particular escape hatch.

• The runtime can disallow the escape hatch by fiat.
• Alternatively, the runtime can whitelist the binaries that

can be launched by the escape hatch. Each whitelisted
binary must have a pre-generated taint model attached to
it [26], such that the runtime can determine whether the
binary is safe to launch given a particular set of tainted
inputs, and if so, how taint should be assigned in the
managed world when the binary terminates.

• The runtime can track instruction-level information
flows in binaries launched by an escape hatch. To do
so, the runtime must execute the native instructions via
emulation [54, 76]. Strictly speaking, the runtime only
needs to emulate instructions that touch sensitive data;

the runtime can use page table permissions to detect
when native code tries to access tainted data [36, 55, 56].
This optimization allows most native code to execute
unemulated, i.e., directly atop the hardware.

PyRB could use any or all of these strategies. Our current
PyRB prototype uses the first two. PyRB disallows C bind-
ings by fiat, and only allows applications to spawn a child
process if that process will be an instance of the PyRB in-
terpreter (with the Python code to run in the child process
specified as an argument to the child process). The parent
and child PyRB interpreters will introspect on cross-process
file descriptor communication, encapsulating the raw bytes
within a custom protocol which ensures that taint is correctly
propagated between the two runtimes.

4.6 Discussion

The necessity of IFC: A Riverbed server attests its systems
software and its Riverbed managed runtime. However, the
server does not attest the contents of higher-level code be-
longing to the web service. At first glance, this approach
might seem odd: why not have the server attest all application
code as well? If clients trust the attested application code,
then server-side IFC might be unnecessary. However, in many
cases, application code is not open source, e.g., because the
code contains proprietary intellectual property that confers a
competitive advantage to the web service owner. Code like
this cannot be audited by a trusted third party, so end-users
would gain little confidence from remote attestations of that
code. Even if the server-side code were open source and pub-
licly auditable, there are many more server applications than
OSes and low-level systems software. Given a finite amount
of resources that can be devoted to auditing, those resources
are best spent inspecting the lowest levels of the stack. Indeed,
if those levels are not secure, then even audited higher-level
code will be untrustworthy. Also note that, even if the web
service code has been audited, Riverbed provides security in
depth, by catching any disallowed information flows that the
audit may have missed.

Universe migration: Due to server-side load balancing or
fail-over, a container belonging to a universe can migrate
across different physical servers. From a user’s perspective,
migration is transparent if a user-facing container is placed on
a server with a trusted stack—attestation involving the new
server and the user’s Riverbed proxy will succeed as expected.
However, before migration occurs, the old server must force
the new server to attest; in this fashion, the old server ensures
that the new server runs a trusted Riverbed stack (and will
therefore respect the data policies associated with the universe
being migrated).

Preventing denial-of-service via spurious universe cre-
ation: Attackers might generate a large number of fake users,
each of which has a policy that requires a separate universe;
the attacker’s goal would be to force the application to exhaust
resources trying to manage all of the universes. Fortunately,

in a given Riverbed application, each universe employs copy-
on-write storage layered atop a base image. As a result, a new
universe consumes essentially zero storage resources until the
universe starts receiving actual client requests that write to
storage. Riverbed also suspends cold universes to disk. Thus,
a maliciously-created universe that is cold will consume no
CPU cycles and no RAM space; storage overhead will be
proportional to the write volume generated by client requests,
but this overhead is no different than in a non-Riverbed ap-
plication. Regardless, a Riverbed application should perform
the same user verification [32, 73, 75] that a traditional web
service performs.
Hostname management: Applications which use a microser-
vice architecture will contain many small pieces of code that
are executed by a potentially large number of hostnames. An
application that uses elastic scaling may also dynamically
bind service state to a large set of hostnames. User policies
can employ wildcarded TLS hostnames [30] to avoid the need
for a priori knowledge of all possible hostnames.
Taint relabeling: Consider a user named Alice. A Riverbed
service assigns Alice to a universe upon receiving the first
request from Alice (§4.4). What happens if Alice later wants
to re-taint her data, i.e., assign a different policy to that data?

Suppose that Alice lives in a singleton universe that only
contains herself. Further suppose that her policy modification
keeps her in a singleton universe. In this scenario, re-tainting
data is straightforward. If storage permissions were enabled
but now are not, Riverbed deletes Alice’s data on persistent
storage. If network permissions changed, then Riverbed will
only allow tainted data to flow to the new set of whitelisted
endpoints. Nothing special must be done to handle tainted
memory in the managed runtime—since Alice still lives in a
singleton universe, there is no way for the service to combine
her in-memory data with the data of others. If Alice later
wants to invoke her “right to be forgetten,” Riverbed just
destroys Alice’s universe.

The preceding discussion assumed that Alice only has uni-
verse state in a single TLS domain (e.g., x.com). However,
Alice’s singleton universe will span multiple domains if Al-
ice’s original policy enabled cross-domain data transfers. In
these scenarios, Riverbed must disseminate a policy modi-
fication request to all relevant domains. Doing so is mostly
straightforward, since the relevant domains are explicitly enu-
merated in Alice’s original policy. Riverbed does need to pay
special attention to wildcarded network sinks like *.x.com;
such domains must expose a directory service that allows
Riverbed to enumerate the concrete hostnames that are cov-
ered by the wildcard.

Now consider a different user Bob who wants to change his
policy. If Bob lives in a universe that is shared with oth-
ers, then re-tainting is harder, regardless of whether Bob
wishes to transfer to a shared universe or a singleton one.
The challenges are the same ones faced by a synchronous
universe clone at policy-violation time (§4.4): since Riverbed

is application-agnostic, Riverbed has no easy way to cleanly
splice a user’s data out of one universe and into another. Thus,
if Bob lives in a shared universe and wishes to move to a
different one, Riverbed must first use application-specific
mechanisms to extract his data from his current universe.
Then, Riverbed deletes Bob’s data in his current universe,
using application-specific methods. Finally, Riverbed must re-
inject Bob’s data into the appropriate universe via application-
specific requests. This migration process may be tedious, but
importantly, Riverbed narrows the scope of data finding and
extraction. When re-tainting must occur, the application only
needs to look for Bob’s data within Bob’s original universe,
not the full set of application resources belonging to all users.
Before and after re-tainting, Riverbed ensures that Bob’s IFC
policies are respected.

CDNs: Large-scale web services use CDNs to host static ob-
jects that many users will need to fetch. CDN servers do not
run application logic, but they do see user cookies which
may contain sensitive information. So, by default, client-
side Riverbed proxies force CDN nodes to attest. However, a
proxy can explicitly whitelist CDN domains that should not
be forced to attest.

Policy creep: Traditional end-user license agreements rep-
resent a crude form of data consent. In a EULA, a service
provider employs natural language to describe how a service
will handle user data; a user can then decide whether to opt
into the service. Riverbed tries to empower users by giving
users the ability to define policies for data manipulation. How-
ever, Riverbed cannot force a service to regard a user-defined
policy as acceptable. Furthermore, the history of traditional
EULAs suggests that, in a Riverbed world, services will pre-
fer less restrictive Riverbed policies. For example, a service
may refuse to accept a user if the user’s Riverbed policy will
not allow data flows to a particular advertising network. In
this situation, the service can mandate that a less restrictive
policy is the cost of admission to the service. Riverbed cannot
prevent such behavior. However, Riverbed does force services
to be more transparent about data promiscuity, because any
service-suggested policy must be explicit about how data will
be used. Riverbed also uses IFC to force services to adhere to
policies.

Deployment considerations: Riverbed assumes that datacen-
ter machines have TPM hardware. This assumption is rea-
sonable, since TPMs are already present in many commodity
servers.

In a complex, multi-tier application, components may span
multiple administrative domains. The failure of some domains
to run up-to-date stacks may lead to cascading problems with
the overall application, as trusted stacks refuse to share data
with unpatched ones. This behavior is actually desirable from
the security perspective, and it incentivizes domains to keep
their software up-to-date.

5 IMPLEMENTATION

The core of our Riverbed prototype consists of a client-side
proxy (§4.3), a server-side reverse proxy (§4.4), and a taint-
tracking Python runtime (§4.5). The two proxies, which are
written in Python, share parts of their code bases, and com-
prise 773 lines in total, not counting external libraries to han-
dle HTTP traffic [57] and manipulate Docker instances [23].
PyRB is a derivative of the PyPy interpreter [53], and contains
roughly 500 lines of new or modified source code.

To implement remote attestation, servers used LG’s UEFI
firmware, which implemented the TPM 2.0 specification [70].
At boot time, the firmware extended a PCR with a TPM-
aware version of the GRUB2 bootloader [17]. GRUB2 then
extended the PCR with a TPM-aware version of the Linux 4.8
kernel. The kernel used Linux’s Integrity Management Archi-
tecture [44] to automatically extend the PCR when loading
kernel modules or user-mode binaries. Contextual attesta-
tion graphs were generated by Cobweb [74], with servers
and client-side Riverbed proxies using the Cobweb library to
implement the attestation protocol.

6 EVALUATION

In this section, we demonstrate that Riverbed induces only
modest performance penalties, allowing Riverbed to be a
practical security framework for realistic applications. In all
experiments, server code ran on an Amazon c4 instance
which had a 4-core Intel Xeon E5-2666 processor and 16 GB
of RAM. The client was a 3.1 GHz Intel Core i7 laptop with
16 GB of RAM. The network latency between the client and
the server was 14 ms.

6.1 Attestation Overhead
Before a client-side Riverbed proxy will send data to a server,
the proxy will force the server to attest. We evaluated at-
testation performance under a variety of emulated network
latencies and bandwidths. The client’s policy required the
attesting server to run a trusted version of /sbin/init, as
well as trusted versions of 31 low-level system binaries like
/bin/sh. The policy also used a Cobweb graph predicate
(§4.3) to validate the process tree belonging to the Docker
subsystem, ensuring that the tree contained no extraneous or
missing processes.

Due to space restrictions, we only provide a summary of the
results. Attestations were small (112 KB), so attestation time
was largely governed by network latency, the cost of the slow
TPM quote() operation (which took 215 ms on our server
hardware), and Cobweb overheads for graph serialization,
deserialization, and predicate matching (which required 562
ms of aggregate compute time on the server and the client-
side proxy). On a client/server network link with a 14 ms
RTT, the client-perceived time needed to fetch and validate
an attestation was 846 ms. Proxies cache attestation results
(§4.3), so this attestation penalty is amortized.

6.2 Case Studies
To study Riverbed’s post-attestation overheads, we ported
three Python applications to Riverbed.

• MiniTwit [59] is a Twitter clone that implements core
Twitter features like posting messages and following
users. Application code runs in Flask [58], a popular
server-side web framework. MiniTwit uses a SQLite
database to store persistent information. We defined a
Riverbed policy which allowed user data aggregation,
and allowed tainted data to be written to storage and to
other network servers in our MiniTwit deployment.

• Ionic Backup [51] is a Dropbox clone that provides a
user with online storage. Ionic allows a user to upload,
download, list, and delete files on the storage server. The
Ionic client uses HTTP to communicate with the server.
For this application, we defined a Riverbed policy which
allowed user data to be written to disk, but disallowed
aggregation, and prevented user data from being sent to
other network servers.

• Thrifty P2P [43] implements a peer-to-peer distributed
hash table [60, 68]. The primary client-facing opera-
tions are PUT(key,value) and GET(key). Inter-
nally, Thrifty peers issue their own traffic to detect failed
hosts, route puts and gets to the appropriate peers, and
so on. For this application, we defined a Riverbed policy
which allowed aggregation and storage, but only allowed
tainted data to be written to endpoints that resided in our
test deployment of Thrifty servers.

Ionic required no modifications to run atop Riverbed. Thrifty
peers used a custom network protocol to communicate; so, we
had to build a proxy for the Thrift RPC layer [3] that injected
Riverbed policies into outgoing messages, and tainted in-
coming data appropriately. MiniTwit’s core application logic
required no changes, but, to reduce the likelihood of over-
tainting, we did modify MiniTwit’s Python-based database
engine to be natively taint-aware, e.g., so that each database
row had an associated on-disk taint bit, and so that query
results were tagged with the appropriate union taints, based
on the items that were read and written to satisfy the query.
Our modifications are hidden beneath a narrow abstraction
layer, making it easy to integrate the Python-level MiniTwit
logic with off-the-shelf taint-tracking databases [63, 64, 77].

Figure 4 depicts end-to-end performance results for
MiniTwit, Ionic, and Thrifty. The results demonstrate that
Riverbed imposes small client-perceived overheads (1.01x–
1.10x). Figure 5 isolates Riverbed’s server-side computational
penalties. For each request type, we compare server-side per-
formance when using unmodified PyPy, PyRB in which no
data is tainted, or PyRB in which data is tainted according
to the policies that we described earlier in this section. For
MiniTwit, Riverbed had overheads of 1.02x–1.15x. For Ionic,
Riverbed imposed overheads of 1.04x–1.16x. For Thrifty,
puts and gets had slowdowns of 1.18x and 1.26x respectively.
Riverbed imposed the least overhead for Ionic’s “remove” and

Operation Without
Riverbed

With
Riverbed

MiniTwit view timeline 229 ms 252 ms
Ionic download 82.5 ms 83.1 ms
Ionic ls 14.1 ms 14.2 ms
Thrifty GET request 27.5 ms 28.0 ms

Figure 4: End-to-end response times for processing various user
requests. For MiniTwit, the user viewed her timeline. For Ionic, the
user downloaded a 300 KB file, or asked for a list of the contents of
a server-side directory. For Thrifty, the client fetched a 20 byte value
from a DHT that contained 2 nodes; the DHT was intentionally kept
small to emphasize the computational overheads of Riverbed. The
client/server network latency was 14 ms. Each result is the average
of 50 trials.

Operation Regular
PyPy

PyRB
(no taint)

PyRB
(taint)

MiniTwit post message 14 ms 15 ms 15 ms
MiniTwit view timeline 4.1 ms 4.2 ms 4.2 ms
MiniTwit follow user 13 ms 15 ms 15 ms
Ionic upload 2.3 ms 2.5 ms 2.5 ms
Ionic download 4.8 ms 5.0 ms 5.0 ms
Ionic ls 0.43 ms 0.50 ms 0.50 ms
Thrifty PUT request 0.16 ms 0.17 ms 0.19 ms
Thrifty GET request 0.19 ms 0.24 ms 0.24 ms

Figure 5: Server-side overheads for processing various user requests.
The workloads are a superset of the ones in Figure 4. Each result is
the average of 50 trials.

“delete” operations, since PyRB could handle these operations
merely by issuing file system calls, without handling much
in-memory data that had to be checked for taint. In contrast,
operations that involved reading or writing network data re-
quired PyRB to interpose on data processing code, even if no
data was tainted, and perform extra work at data sources and
sinks.

6.3 PyPy Benchmarks
For a wider perspective on PyRB’s performance, we used
PyRB to run the benchmarking suite from the Performance
project [52]. The suite focuses on real Python applications,
downloading the necessary packages for those applications
and then running the real application code. Figure 6 shows
PyRB’s performance on a representative set of benchmarks.
The benchmarks that are above the thin black line resemble
applications that might run inside of a Riverbed universe;
these benchmarks perform actions that are common to web
services, like parsing HTML, responding to HTTP requests,
and performing database queries. These benchmarks tend
to be IO-heavy, with occasional CPU idling as code waits
for IOs to complete. In contrast, the benchmarks beneath
the thin black line are CPU-intensive. PyRB does not affect
the speed of IOs, but does affect the speed of computation,
so PyRB has slightly higher overhead for the bottom set of
benchmarks. Overall, PyRB is at most 1.19x slower. These
results overestimate PyRB’s overheads because clients and

Benchmark Overhead

Django 1.14x
Render HTML table 1.16x

Code run in PyPy interpreter 1.08x
JSON parsing 1.13x

Python git operations 1.01x
SQL Alchemy 1.05x

Spitfire 1.19x
Twisted 1.17x

Fractal Generation 1.18x
Spectral Norm 1.10x

Raytracing 1.19x

Figure 6: PyRB’s performance on representative benchmarks from
the Performance benchmark suite [52]. PyRB’s performance is nor-
malized with respect to that of regular PyPy. No data was tainted in
these experiments.

No RB 1 8 16 32 64 128
0

1

2

3

4

5

M
em

or
y

Us
ag

e
(G

B)

Figure 7: Physical memory pressure in MiniTwit when run without
Riverbed, or with Riverbed using various numbers of universes.
Note that in MiniTwit, each universe requires only one container.
In each test configuration, we measured memory pressure after
submitting 1000 requests to each MiniTwit instance that existed
in the configuration.

0 128 256 384 512 640 768 896 1024
of universes

0
100
200
300
400
500
600

Re
sp

on
se

 R
at

e
(K

B/
s)

no swapping
swapping

Figure 8: MiniTwit server response rate as a function of (1) the
number of universes, and (2) whether the server had 60 GB of
RAM or 16 GB of RAM. We used the Apache Benchmark tool [1]
to simulate clients that requested MiniTwit timelines which had
100 messages. In each trial, we submitted 1000 requests, with 100
outstanding requests at any given time. For the server with 16 GB of
RAM, swapping began with 256 universes.

servers resided on the same machine (and thus incurred zero
network latency).

6.4 Universe Overhead
The size for a base Riverbed Docker image is 212 MB. The
image contains the state that belongs to the PyRB runtime,
and is similar in size to the official PyPy Docker image [22].
Each Riverbed service adds application-specific code and

data to the base Riverbed image. However, a live Docker
instance uses copy-on-write storage, so multiple Riverbed
universes share disk space (and in-memory page cache space)
for common data.

We believe that for most Riverbed applications, the uni-
verse abstraction will not increase overall storage require-
ments; in other words, the space needed for per-universe data
plus shared-universe data will be similar to the space needed
for the non-Riverbed version of the application. For example,
in MiniTwit, for a given number of timelines with a given
amount of posts, the storage requirements are the same if the
timelines are partitioned across multiple Riverbed universes,
or kept inside a single, regular MiniTwit deployment. How-
ever, Docker’s copy-on-write file system does result in slower
disk IOs. As a concrete example, we measured MiniTwit’s
database throughput when MiniTwit ran directly atop ext4,
and when MiniTwit ran inside a universe that used Docker’s
overlayfs file system [24]. We examined database workloads
with read/write ratios of 95/5 and 50/50, akin to the YCSB
workloads A and B [16]. The targeted database rows were
drawn from a Zipf distribution with β = 0.53, similar to the
distribution observed in real-life web services [4, 72]. We
found that, inside a Riverbed universe, transaction throughput
slowed by 7.7% for the 95/5 workload, and by 17.3% for the
50/50 workload.

For our three sample applications, spawning a new Docker
container required 260–280 ms on our test server. In Riverbed,
the container creation penalty is rarely paid; the reverse proxy
only has to create a new universe upon seeing a request with
a policy that is incompatible with all pre-existing universes.
Subsequent requests which are tagged with that policy will
be routed to the pre-existing universe.

Creating new universes is rare, but pausing and unpausing
old ones may not be. If an application has many universes,
and memory pressure on a particular physical server is high,
then temporarily-quiescent universes can be suspended to
disk. On our test server with 512 live containers, pausing or
unpausing a single Docker instance took roughly 30 ms. How-
ever, recent empirical research has shown that in datacenters,
a tenant’s resource requirements are often predictable [19].
Thus, universes can be assigned to physical servers in ways
that reduce suspension/resumption costs.

Docker virtualizes at the POSIX level, so the processes
inside of a Riverbed universe are just processes inside of
the host OS. As a result, the RAM footprint for a Riverbed
universe is just the memory that is associated with the host
processes for the universe. Our Riverbed prototype was able
to spawn up to 1023 live containers on a single server. This
1023 bound is a well-known limitation of the current Docker
implementation. Docker associates a virtual network card
with each instance, and attaches the virtual card to a Linux
network bridge [69]; a Linux bridge can only accept 1023
interfaces. Regardless, the current bound of 1023 containers
per machine does not imply that a single application can

have at most 1023 universes. The bound just means that,
if an application has more than 1023 universes, then those
universes must be spread across multiple servers. Riverbed’s
reverse proxy (§4.4) considers server load when determining
where to create or resurrect a universe; thus, the per-server
container limit is not a concern in practice.

Figure 7 demonstrates that Riverbed’s memory pressure is
linear in the number of active containers. As shown in Fig-
ure 8, a large number of universes has no impact on server
throughput if all of the hot universes fit in memory. Unsurpris-
ingly, throughput drops if active universes must be swapped
between RAM and disk. However, a Docker container is just
a set of Linux processes that are constrained using names-
paces [38] and cgroups [12]; thus, the memory overhead for
launching a Riverbed universe with N processes is similar
to the memory overhead of scaling out a regular application
by creating N regular processes. That being said, a Riverbed
application does create processes more aggressively than a
normal application. In Riverbed, incompatible policies re-
quire separate universes (and therefore separate processes),
even if aggregate load across all universes is low.

7 CONCLUSION

Riverbed is a platform that simplifies the creation of web ser-
vices that respect user-defined privacy policies. A Riverbed
universe allows a web service to isolate the data that belongs
to users with the same privacy policy; Riverbed’s taint track-
ing ensures that the data cannot flow to disallowed sinks.
Riverbed’s client-side proxy will not divulge sensitive user
data until servers have attested their trustworthiness. Riverbed
is compatible with commodity managed languages, and does
not force developers to annotate their source code or reason
about security lattices. Experiments with real applications
demonstrate that Riverbed imposes no more than a 10% per-
formance degradation, while giving both users and developers
more confidence that sensitive data is being handled correctly.

REFERENCES

[1] Apache Software Foundation. Apache Benchmark.
https://httpd.apache.org/docs/2.4/programs/ab.html.

[2] Apache Software Foundation. Apache SpamAssassin:
Open-source Spam Filter. http://spamassassin.apache.
org/.

[3] Apache Software Foundation. Apache Thrift. https:
//thrift.apache.org/.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale Key-
Value Store. In Proceedings of SIGMETRICS, pages
53–64, 2012.

[5] T. Austin and C. Flanagan. Efficient Purely-dynamic
Information Flow Analysis. ACM SIGPLAN Notices,
44(8):20–31, 2009.

[6] T. Austin and C. Flanagan. Permissive dynamic infor-
mation flow analysis. In Proceedings of PLAS, 2010.

[7] T. Austin, J. Yang, and C. F. A. Solar-Lezama. Faceted
execution of policy-agnostic programs. In Proceedings
of the SIGPLAN Workshop on Programming Languages
and Analysis for Security, pages 15–26, 2013.

[8] A. Baumann, M. Peinado, and G. Hunt. Shielding Ap-
plications from an Untrusted Cloud with Haven. In
Proceedings of OSDI, pages 267–283, 2014.

[9] S. Berger, R. Cáceres, K. A. Goldman, R. Perez,
R. Sailer, and L. van Doorn. vTPM: Virtualizing the
Trusted Platform Module. In Proceedings of USENIX
Security, pages 305–320, 2006.

[10] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Infor-
mation Flow Control in WebKit’s JavaScript Bytecode.
In International Conference on Principles of Security
and Trust, pages 159–178, 2014.

[11] A. Booth. Charities Hit with Fines for Shar-
ing Donors’ Data Without Consent, December
7, 2016. Sophos Naked Security Blog. https:
//nakedsecurity.sophos.com/2016/12/07/charities-hit-
with-fines-for-sharing-donors-data-without-consent/.

[12] N. Brown. Control groups, July 7, 2014. LWN. https:
//lwn.net/Articles/604609/.

[13] D. Chandra and M. Franz. Fine-grained information
flow analysis and enforcement in a java virtual machine.
In Proceedings of the Computer Security Applications
Conference, pages 463–475, 2007.

[14] S. Chong, K. Vikram, and A. Myers. SIF: Enforcing
Confidentiality and Integrity in Web Applications. In
Proceedings of USENIX Security, pages 1–16, 2007.

[15] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,
B. O’Hanlon, J. Ramsdell, A. Segall, and B. Sniffen.
Principles of Remote Attestation. International Journal
of Information Security, 10(2):63–81, June 2011.

[16] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems
with YCSB. In Proceedings of SOCC, pages 143–154,
2010.

[17] CoreOS. GRand Unified Bootloader 2.0. https://github.
com/coreos/grub.

[18] J. Corpuz. Best Ad Blockers and Privacy Ex-
tensions: Chrome, Safari, Firefox, and IE. Tom’s
Guide. https://www.tomsguide.com/us/pictures-story/
565-best-adblockers-privacy-extensions.html.

[19] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fon-
toura, and R. Bianchini. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource
Management in Large Cloud Platforms. In Proceedings
of SOSP, pages 153–167, 2017.

[20] V. Costan and S. Devadas. Intel SGX Explained, Febru-
ary 20, 2017. Cryptology ePrint Archive: Version
20170221:054353. https://eprint.iacr.org/2016/086.pdf.

[21] Docker. Docker Home Page. https://docker.com.

[22] Docker. Docker PyPy Images. https://hub.docker.com/
_/pypy/.

[23] Docker. Docker SDK for Python. https://docker-py.
readthedocs.io/en/stable/.

[24] Docker Docs. Using the OverlayFS storage
driver. https://docs.docker.com/storage/storagedriver/
overlayfs-driver/.

[25] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner,
D. Garg, and P. Druschel. Thoth: Comprehensive Policy
Compliance in Data Retrieval Systems. In Proceedings
of USENIX Security, pages 637–654, 2016.

[26] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taint-
Droid: An Information-flow Tracking System for Real-
time Privacy Monitoring on Smartphones. ACM Trans-
actions on Computer Systems (TOCS), 32(2), 2014.

[27] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and
M. McCauley. Towards Practical Taint Tracking. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2010-92, 2010.

[28] EU Parliament. GDPR Portal, 2017. http://www.eugdpr.
org/eugdpr.org.html.

[29] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazieres,
J. C. Mitchell, and A. Russo. Hails: Protecting Data
Privacy in Untrusted Web Applications. In Proceedings
of OSDI, pages 47–60, 2012.

[30] GoDaddy. What is a Wildcard SSL certificate?
https://www.godaddy.com/help/what-is-a-wildcard-
ssl-certificate-567.

[31] Google. What is Safe Browsing? https://developers.
google.com/safe-browsing/.

[32] S. Gurajala, J. White, B. Hudson, and J. Matthews. Fake
Twitter Accounts: Profile Characteristics Obtained Us-
ing an Activity-based Pattern Detection Approach. In
Proceedings of the International Conference on Social
Media and Society, 2015.

[33] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad Apps: End-to-
End Security via Automated Full-System Verification.
In Proceedings of OSDI, pages 165–181, 2014.

[34] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JS-
Flow: Tracking Information Flow in JavaScript and its
APIs. In Proceedings of the ACM Symposium on Ap-
plied Computing, pages 1663–1671, 2014.

[35] D. Hedin and A. Sabelfeld. A Perspective on
Information-Flow Control. In Proceedings of the Mark-
toberdorf Summer School, August 2011.

[36] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical Taint-Based Protection Using Demand Emu-
lation. In Proceedings of EuroSys, pages 29–41, April
2006.

[37] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan:
A Distributed Sandbox for Untrusted Computation on
Secret Data. In Proceedings of OSDI, pages 533–549,

2016.
[38] M. Kerrisk. Namespaces in Operation, Part 1: Names-

paces Overview, January 4, 2013. LWN. https://lwn.net/
Articles/531114/.

[39] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information Flow
Control for Standard OS Abstractions. In Proceedings
of SOSP, 2007.

[40] J. Layton. Extended File Attribute Rock!, June 29, 2011.
http://www.linux-mag.com/id/8741/.

[41] K. Leino. Dafny: An Automatic Program Verifier for
Functional Correctness. In International Conference
on Logic for Programming Artificial Intelligence and
Reasoning, pages 348–370, 2010.

[42] P. Li, Y. Mao, and S. Zdancewic. Information Integrity
Policies. In Proceedings of the Workshop on Formal
Aspects in Security and Trust, September 2003.

[43] A. Lindsay. Thrifty P2P. https://github.com/atl/thrifty-
p2p.

[44] Linux. Integrity Measurement Architecture. https://
sourceforge.net/p/linux-ima/wiki/Home/.

[45] J. Liu, M. George, K. Vikram, X. Qi, L. Waye, and
A. Myers. Fabric: A Platform for Secure Distributed
Computation and Storage. In Proceedings of SOSP,
pages 321–334, October 2009.

[46] B. Livshits. Dynamic taint tracking in managed run-
times. Technical Report MSR-TR-2012-114, Microsoft,
2012.

[47] Lyon Brothers Enterprises. Turtl: Find Your Private
Space. https://turtlapp.com/.

[48] A. Myers and B. Liskov. Protecting Privacy Using
the Decentralized Label Model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442,
2000.

[49] Oracle Corporation. Java Native Interface. http://docs.
oracle.com/javase/8/docs/technotes/guides/jni/.

[50] T. Pasquier, J. Singh, J. Bacon, and D. Eyers. Informa-
tion Flow Audit for PaaS Clouds. In Proceedings of the
IEEE International Conference on Cloud Engineering,
pages 42–51, 2016.

[51] F. Primerano. Ionic Backup. https://github.com/
Max00355/IonicBackup.

[52] PyPy. PyPy Benchmarks. https://bitbucket.org/pypy/
benchmarks.

[53] PyPy. PyPy Home Page. https://pypy.org/.
[54] C. Qian, X. Luo, Y. Shao, and A. Chan. On Tracking In-

formation Flows Through JNI in Android Applications.
In Proceedings of DSN, pages 180–191, June 2014.

[55] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu.
LIFT: A Low-Overhead Practical Information Flow
Tracking System for Detecting Security Attacks. In Pro-
ceedings of MICRO, pages 135–148, December 2006.

[56] A. Razeen, A. Lebeck, D. Liu, A. Meijer, V. Pistol, and
L. Cox. SandTrap: Tracking Information Flows On

Demand with Parallel Permissions. In Proceedings of
MobiSys, June 2018.

[57] K. Reitz. Requests: HTTP for Humans. http://docs.
python-requests.org/en/master/.

[58] A. Ronacher. Flask. http://flask.pocoo.org/.
[59] A. Ronacher. Minitwit. https://github.com/pallets/flask/

blob/master/examples/minitwit/.
[60] A. Rowstron and P. Druschel. Pastry: Scalable, Decen-

tralized Object Location and Routing for Large-scale
Peer-to-peer Systems. In IFIP/ACM International Con-
ference on Distributed Systems Platforms and Open
Distributed Processing, pages 329–350, 2001.

[61] A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-
Sensitive Security Analysis. In Proceedings of CSF,
pages 186–199, 2010.

[62] P. Sayer. German Consumer Groups Sue What-
sApp Over Privacy Policy Changes, January 30,
2017. PCWorld. http://www.pcworld.com/article/
3163027/private-cloud/german-consumer-groups-sue-
whatsapp-over-privacy-policy-changes.html.

[63] D. Schoepe, D. Hedin, and A. Sabelfeld. SeLINQ:
Tracking Information Across Application-Database
Boundaries. In ACM SIGPLAN Notices, volume 49,
pages 25–38, 2014.

[64] D. Schultz and B. Liskov. IFDB: Decentralized Infor-
mation Flow Control for Databases. In Proceedings of
EuroSys, pages 43–56, 2013.

[65] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know About Dynamic Taint Analysis
and Forward Symbolic Execution (but might have been
afraid to ask). In Proceedings of the IEEE Symposium
on Security and Privacy, pages 317–331, 2010.

[66] S. Sen, S. Guha, A. Datta, S. Rajamani, J. Tsai, and
J. Wing. Bootstrapping Privacy Compliance in Big Data
Systems. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 327–342, 2014.

[67] A. Slowinska and H. Bos. Pointless Tainting? Evaluat-
ing the Practicality of Pointer Tainting. In Proceedings
of EuroSys, pages 61–74, 2009.

[68] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. ACM SIGCOMM Com-
puter Communication Review, 31(4):149–160, 2001.

[69] The Linux Foundation. Linux Network Bridge. https:
//wiki.linuxfoundation.org/networking/bridge.

[70] Trusted Computing Group. TPM 2.0 Library Specifi-
cation. https://trustedcomputinggroup.org/tpm-library-
specification/.

[71] Trusted Computing Group. Trusted Platform Module
(TPM) Summary. https://trustedcomputinggroup.org/
trusted-platform-module-tpm-summary/.

[72] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
Workload Analysis for Decentralized Hosting. Inter-
national Journal of Computer and Telecommunications

Networking, 53(11):1830–1845, 2009.
[73] E. van der Walt and J. Eloff. Using Machine Learning to

Detect Fake Identities: Bots vs Humans. IEEE Access,
6:6540–6549, January 2018.

[74] F. Wang, Y. Joung, and J. Mickens. Cobweb: Practi-
cal Remote Attestation Using Contextual Graphs. In
Proceedings of SysTEX, 2017.

[75] C. Xiao, D. Freeman, and T. Hwa. Detecting Clusters of
Fake Accounts in Online Social Networks. In Proceed-
ings of the ACM Workshop on Artificial Intelligence and
Security, pages 91–101, 2015.

[76] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu. Mal-
ton: Towards On-Device Non-Invasive Mobile Malware
Analysis for ART. In Proceedings of USENIX Security,
pages 289–306, August 2017.

[77] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama,
C. Flanagan, and S. Chong. Precise, Dynamic Infor-
mation Flow for Database-backed Applications. In Pro-
ceedings of PLDI, pages 631–647, 2016.

[78] J. Yang, K. Yessenov, and A. Solar-Lezama. A language
for automatically enforcing privacy policies. In ACM
SIGPLAN Notices, volume 47, pages 85–96, 2012.

[79] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving Application Security with Data Flow Asser-
tions. In Proceedings of SOSP, pages 291–304, 2009.

[80] A. Zdancewic, L. Zheng, N. Nystrom, and A. Myers.
Untrusted Hosts and Confidentiality: Secure Program
Partitioning. In Proceedings of SOSP, pages 1–14, 2001.

[81] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Se-
curing Distributed Systems with Information Flow Con-
trol. In Proceedings of NSDI, pages 293–308, 2008.

[82] K. Zetter. Hackers Finally Post Stolen Ash-
ley Madison Data, August 18, 2015. Wired.
https://www.wired.com/2015/08/happened-hackers-
posted-stolen-ashley-madison-data/.

APPENDIX: OVERVIEW OF ATTESTATION

In this section, we give a slightly simplified description of the
classic attestation protocol. We explain how an attestor (i.e.,
a potentially untrustworthy machine) securely describes its
software stack to a remote verifier machine. For more details,
we refer the interested reader to other work [15, 20, 9].
Setup: The attestor’s trusted hardware (called a TPM
chip [71]) possesses a unique public/private key pair that
is burned into the hardware. The private key is never exposed
to the rest of the machine. The attestor also has a certificate,
signed by the manufacturer of the TPM, that binds the attestor
to its public key. Thus, the hardware manufacturer acts as a
certificate authority (CA). Before the remote attestation pro-
tocol begins, the verifier must download the public key of the
CA.

A TPM contains a small number of platform config-
uration registers (PCRs). Each PCR is made of tamper-
resistant, non-volatile RAM that only the TPM can access.

At boot time, the TPM resets each PCR to a well-known
value. The TPM’s extend(index, value) is the only
way that entities external to the TPM can update a PCR.
An extension sets PCR[index] = SHA1(PCR[index]
|| value). During the boot process, the BIOS automat-
ically extends PCR[10] with a value equal to the SHA1
hash of the BIOS code. The BIOS then reads the bootloader
from the disk, extends PCR[10] with the hash of the boot-
loader, and jumps to the first instruction of the bootloader.
The bootloader reads the kernel binary into RAM, extends
PCR[10] with the hash of the kernel image, and then jumps
to the first instruction of the kernel. These PCR extensions
continue as the OS loads additional kernel modules and user-
level system binaries. Thus, the attestor’s PCR[10] register
will contain a cumulative hash of the local software stack.
Remote attestation: The verifier generates a random nonce
and sends it to the attestor. The attestor asks its local TPM
to generate a signature over the nonce and the value of
PCR[10]; this signature, which is called a “quote” in TPM
parlance, uses the attestor’s unique private key (whose corre-
sponding public key is validated by a certificate from the CA).
The attestor returns the following information to the verifier:

• the attestor’s certificate,
• the quote,
• the value of PCR[10] that is attested by the quote,
• a list of the SHA1 hashes that were used to extend
PCR[10], and

• optionally, a mapping from each hash to the server-side
file name representing the content that was hashed.

The verifier checks the validity of the attestor’s public key
using the certificate. The verifier then checks the validity of
the quote signature, and confirms that cumulatively extending
PCR[10] with the attestor-reported hash list results in the
attestor-reported PCR[10] value. If these checks succeed,
the verifier sees whether the hash list corresponds to a trusted
ordering of trusted system components. If so, the remote
attestation succeeds.
Attesting VMs: The traditional attestation protocol can be
extended to cover the software stack inside of a VM [9]. Dur-
ing the initial boot sequence of a physical server, the physical
PCR[10] will be extended with the bootloader code, the hy-
pervisor binary, and other low-level software. The hypervisor
will then extend PCR[10] using content associated with the
virtual TPM manager; this content includes the binary of the
manager itself, as well as certificates needed to vouch for the
signatures produced by a VM’s virtual TPM. When a VM
launches, the manager initializes the VM’s virtual PCRs using
the values in the physical PCRs. The VM then boots, extend-
ing (virtual) PCRs as usual. In this manner, the attestation
produced by a virtual TPM will be linked to a non-virtualized
root of trust (i.e., the physical TPM of the server).

