
Cobweb: Practical Remote Attestation Using
Contextual Graphs

Frank Wang∗, Yuna Joung†, and James Mickens†
∗MIT, †Harvard University

Abstract
In theory, remote attestation is a powerful primitive for build-
ing distributed systems atop untrusting peers. Unfortunately,
the canonical attestation framework defined by the Trusted
Computing Group is insufficient to express rich contextual
relationships between client-side software components. Thus,
attestors and verifiers must rely on ad-hoc mechanisms to
handle real-world attestation challenges like attestors that
load executables in nondeterministic orders, or verifiers that
require attestors to track dynamic information flows between
attestor-side components.
In this paper, we survey these practical attestation chal-

lenges.We then describe a new attestation framework, named
Cobweb, which handles these challenges. The key insight is
that real-world attestation is a graph problem. An attestation
message is a graph in which each vertex is a software com-
ponent, and has one or more labels, e.g., the hash value of
the component, or the raw file data, or a signature over that
data. Each edge in an attestation graph is a contextual rela-
tionship, like the passage of time, or a parent/child fork()
relationship, or a sender/receiver IPC relationship. Cobweb’s
verifier-side policies are graph predicates which analyze
contextual relationships. Experiments with real, complex
software stacks demonstrate that Cobweb’s abstractions are
generic and can support a variety of real-world policies.

CCS Concepts • Security and privacy→ Trusted com-
puting;Distributed systems security; Software security
engineering; Usability in security and privacy; • Computer
systems organization → Distributed architectures;

Keywords Remote attestation, Trusted computing, TPMs
ACM Reference Format:
FrankWang, Yuna Joung, and James Mickens. 2017. Cobweb: Practi-
cal Remote Attestation Using Contextual Graphs. In Proceedings of
SysTEX’17:2nd Workshop on System Software for Trusted Execution,
Shanghai, China, October 28, 2017 (SysTEX’17), 7 pages.
https://doi.org/10.1145/3152701.3152705

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SysTEX’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5097-6/17/10. . . $15.00
https://doi.org/10.1145/3152701.3152705

1 Motivation
Remote attestation allows a client machine to securely enu-
merate its executing software to a remote server. Once the
server learns which code is running on the client, the server
can decide whether the client should be trusted. For example,
a server might only trust a client if the client runs a recent
edition of the Linux kernel, and an up-to-date version of
the Go runtime. Remote attestation is useful in distributed
systems where participants reside in different administrative
domains, or otherwise lack a priori trust relationships.

1.1 Remote Attestation in Theory
The textbook protocols for remote attestation [12, 19, 21]
leverage trusted client-side hardware to bootstrap the attes-
tation process. TPM chips [23] are the most common instan-
tiation of such trusted hardware, and are deployed in com-
modity laptops, desktops, servers, and high-end embedded
devices. A TPM chip is a tamper-resistant coprocessor that
possesses a set of Platform Configuration Registers (PCRs);
these registers are inaccessible to the normal CPU. Each TPM
also possesses a public/private key pair. The private key is
never revealed outside of the TPM. The public key is vouched
for by a certificate that is signed by the TPM manufacturer
(e.g., Intel).

When the client (i.e., the attestor) boots, the TPM resets its
PCRs to a well-known initial state. The attestor’s read-only
firmware calculates a hash H of the first-stage bootloader,
and invokes the TPM interface extend(idx,val). This inter-
face instructs the TPM to set PCR[idx] = hash(PCR[idx]
|| val); the read-only firmware uses H as val, and uses an
idx of 10 by convention [5]. Once the extend operation has
completed, the read-only firmware jumps to the first instruc-
tion in the bootloader. The bootloader calculates the hash of
the second-stage bootloader, and extends PCR[10] with this
hash. The bootloader then jumps to the first instruction of
the second-stage bootloader. This process continues as the
machine loads the statically-linked kernel code, dynamically-
linked kernel modules, configuration files, scripts, and user-
level binaries. As the machine boots, the kernel maintains
a list of <file_name, hash(file_data)> tuples represent-
ing the objects that have been used to extend PCR[10].

Once themachine has fully booted, the value in PCR[10] is
a succinct representation of the attestor-side software stack.
The attestor contacts the remote server who will act as the
verifier of the attestation. The verifier generates a nonce, and
returns it to the attestor. The attestor then invokes the TPM’s

SysTEX’17, October 28, 2017, Shanghai, China F. Wang et al.

Figure 1. An example of the diffs between two IMA [5] logs
that were generated by two boots of the same machine. The
machinewas a dual-core Dell ThinkPad laptop running Linux
4.8. The figure above shows differences in the load order of
several kernel modules, shared libraries, and configuration
files. Each IMA log contained 2961 entries; the two logs
had a Levenshtein edit distance of 1403.

quote(idx,nonce) interface, passing 10 as the idx value.
The TPM responds with a signed statement that includes
the nonce and the PCR[10] value. The attestor sends this
statement to the verifier, along with the list of <file_name,
hash(file_data)> tuples. The verifier ensures that (1) the
signature is from a trusted TPM, and (2) the reported value of
PCR[10] actually corresponds to the cumulative hash of the
reported objects. Finally, the verifier determines the trust-
worthiness of the attestor’s software stack, using a database
of trusted hashes to check whether (3) all (or an “important”
subset) of the attestor’s objects correspond to trusted ones.

1.2 Remote Attestation in Practice
Determining if condition (1) is true is straightforward—the
number of TPM vendors is small, and a verifier can easily
find and cache the public keys for the trusted vendors. Con-
dition (2) is also trivial to check, since the verifier merely
needs to perform several hash operations. However, deter-
mining whether condition (3) holds is difficult in practice.
The trustworthiness of an attestor-side program is often
context-sensitive, with different verifiers defining “context”
in different ways. Thus, a simple database of trusted hashes
is often radically insufficient to establish if an attestor should
be trusted. The official TPM specifications are intentionally
agnostic as to how verification policies should be defined and
implemented [19], but defining and implementing policies
are of great practical concern to system designers who wish
to use remote attestation. Consider the following examples:

Nondeterministic load orders: As shown in Figure 1, at-
testors can load software components in a nondeterministic
order. Even on a uniprocessor machine, load orders can be
randomized by nondeterministic completion times for IO
requests. Unfortunately, certain load orderings may trigger
concurrency-related security bugs [26], as different processes
race (for example) on kernel state involving memory man-
agement [25] or the file system [14]. For a verifier to detect
these security problems, attestors need the ability to create
richer attestation messages that go beyond mere hash lists,
and include timing information at the granularity of system

calls or other security-related operations. Verifiers need a
way to define analyses over the resulting temporal graphs.

Information flow: A verifier may tolerate nondeterminis-
tic load orders, but reject certain information flows between
attestor-side programs. For example, a verifier may want
attestors to enforce SELinux-style mandatory access con-
trol, with low-integrity programs unable to feed input to
high-integrity ones through the file system or IPC [4]. In
this scenario, the verifier must ensure that the attestor runs
a MAC-enforcing kernel, and also has defined a reasonable
policy configuration. Thus, attestation reports must contain
the contents of the policy files, not just their hashes, since
the policy files may contain site-specific information that
the verifier cannot anticipate.

A verifier may also want to examine dynamic information
flows on the attestor. For example, the attestor may run a
framework like CamFlow [13] that tracks data as it traverses
OS abstractions like the file system and pipes. A verifier
may want to audit provenance records to ensure that the
verifier will not consume data from untrustworthy sources.
The extant TPM specifications for remote attestation [19]
are ill-suited to capture these kinds of constraints.

Dynamic state: Traditional attestation only examines the
static content of attested objects. However, verifiers may
also wish to validate dynamic program state. For example, in
LKIM [8], a kernel’s in-memory data structures are summa-
rized at the time of attestation using functions which walk
those data structures; depending on the functions, the sum-
mary data may be more complex than simple hash values.

Blacklists: A verifier may deem a particular object to be
categorically unsafe, regardless of when attestors load the
object. For example, a verifier might reject attestors that run
a known-insecure version of a web browser. A verifier may
also want to perform contextual blacklisting, e.g., to only
allow an attestor to run sensitive corporate HR programs
if the attestor runs trusted firewall software. Blacklisting
is an important aspect of attestation—for attestors that run
complex software stacks, a verifier will often have no opinion
about many of the individual components, but will need to
explicitly whitelist or blacklist a subset of the components.

Hash ambiguity: An attestor may not wish to precisely
identify certain components in its software stack. For exam-
ple, suppose that an attestor runs a Python interpreter. The
attestor may only wish to reveal that it runs version 2.7.13,
3.4.6, or 3.6.2 of the CPython implementation. By maintain-
ing ambiguity about the components in its software stack,
the attestor makes it harder for a malicious verifier to di-
rectly exploit zero-day vulnerabilities in attestor code. The
difficulty increases as the number of ambiguous components
grows, since the attacker must reason about a larger number
of potential cross-component interactions.
To support hash ambiguity, attestors must be able to

launch “believable” versions of software components that

Cobweb: Practical Remote Attestation Using Contextual Graphs SysTEX’17, October 28, 2017, Shanghai, China

Attestor Verifier

cw-client

Network
protocol
engine

Engine 1Engine 1
Contextual
attestation

engines

smokescreen

Applications
cw-serverd

exemplard

Policy database

Exemplar VMs

remeasured

Figure 2. The Cobweb architecture.

the attestor does not actually use. Verifier-side policies also
need a way to handle attestation messages which describe
a variety of software components that the attestor plausi-
bly runs. Reasoning about hash ambiguity is unsupported
by the TPM specifications for attestation messages [22] and
verifier-side hash databases [20].

Keeping policies fresh: A final practical concern involves
verifier-side updating of polices. As the attestor’s software
is updated by vendors, the associated hash values and be-
havioral aspects change. Thus, a conscientious attestor that
diligently updates its software will fail attestation if verifiers
are not similarly diligent about updating policies. The TPM
specifications are agnostic about how policies are updated,
but automated tools for performing these updates are critical
for making attestation usable.

2 The Design of Cobweb
The examples in Section 1 suggest that attestation in practice
is a contextual graph problem. We now describe Cobweb,
an attestation framework which leverages this insight to
handle the complexities that arise in real-world attestation
scenarios. Figure 2 provides a high-level overview of the
Cobweb architecture.

2.1 Expressing Attestation Data
Cobweb defines a single attestation report as follows:

• At a minimum, an attestation contains a quoted
PCR[10] value and a classic attestation graph. The clas-
sic graph is a list of <file_name, hash(file_data)>
tuples which correspond to the objects that were cu-
mulatively hashed to produce PCR[10].

• In most scenarios, an attestation will also include a
contextual graph which provides richer information
about the attested software. In the contextual graph,
each vertex represents a software component, and each
directed edge represents a relationship between two
components. Each vertex is associated with one or
more labels; a label representing the hash of the asso-
ciated object must be present, but attestors are free
to attach arbitrary additional labels. Each edge is also
associated with one or more labels which indicate the
type of contextual relationship that the edge repre-
sents. For example, an edge might represent a par-
ent/child fork() relationship, or an information flow
via a pipe or a file.

Cobweb does not mandate that attestors collect prede-
fined types of contextual data. However, for a given at-
testor/verifier pair, the attestor should collect at least the
contextual information which is necessary to satisfy the
verifier-side calculation of trustworthiness. In practice, this
requirement means that verifiers ask clients to run a specific
Cobweb attestation engine, as described below.

2.2 Attestor-side Infrastructure
Cobweb’s cw-client program consists of two parts:

• The contextual attestation engine collects a specific set
of information about the local software stack, and then
bundles that information into a contextual graph. En-
gines are swappable, i.e., attestors can choose which
engine is used by the local cw-client. Our Cobweb
prototype predefines two different engines (although
others are possible). Both engines use IMA [5] to imple-
ment PCR[10] extension. The first engine additionally
tracks fork() and exec() relationships between pro-
cesses [24]. In contrast, the second engine tracks dy-
namic information flows between different processes
via OS interfaces like IPC [13].

• The network protocol engine serializes attestation re-
ports using JSON, transmits those reports to verifiers
using TLS, and responds to interactive queries that ver-
ifiers may issue during the evaluation of hit functions
(§2.3).

cw-client is part of the attestor’s trusted computing base,
and should be checked by verifiers.
As mentioned in Section 1, an attestor may not wish to

reveal the exact identity of certain software components.
Instead, the attestor may want to state that it runs one of
N possible versions. If the verifier trusts all of the possible
versions, the verifier accepts the attestation as trustworthy.
To enable this scenario, attestors use a Cobweb-provided
launching service named smokescreen. For example, sup-
pose that an attestor wants to serve web pages using Apache,
while providing ambiguity about whether Apache, NGINX,
or Tornado is actually used. To do so, the attestor installs all
threeweb servers. The attestor then configures smokescreen
to launch all three web servers, but to sandbox the latter two
using mechanisms which are not exposed via attestation
records; our smokescreen prototype for Linux uses names-
paces [3, 6] to prevent the distractionary applications from
actually interacting with the outside world. Thus, PCR[10]
and the list of hashed software components will indicate that
all three web servers are running, but a verifier cannot tell
which are truly active.1 Note that smokescreen is part of the
attestor’s trusted computing base, so verifiers must check
whether attestors run up-to-date versions of the program.

1To disambiguate which web server is running, a curious verifier can try to
probe attestor software at the application layer, e.g., by sending an HTTP
request to the attestor and looking for a Server HTTP header. Preventing
such application-level leaks is outside the scope of this paper.

SysTEX’17, October 28, 2017, Shanghai, China F. Wang et al.

/sbin/init
hash: b9fa…

/sbin/ifup
hash: 0a7e…

/bin/sh
hash: 9cf8…

/bin/run-parts
hash: 16b2…

/bin/sh
hash: 9cf8…

/bin/ip
hash: c32a…

agnostic

fork()+
exec()

fork()+
exec()

fork()+
exec()

anchor

/usr/lib/firefox/firefox

hash: a879…

ok-if-missing

#Hit function
class ValidateFirefox(BFSVisitor):

def examine_edge(self, e):
if e.type != “fork()+exec()”:

raise HitFuncFailErr(“Bad edge”)
def examine_vertex(self, v):

if (v.path.find(“/usr/bin/”) != 0) and
(v.path.find(“/usr/sbin/”) != 0):
raise HitFuncFailErr(“Bad path”)

path-sensitive

Figure 3. An example of a simple template graph. The
template requires a matching attestation graph to have a
particular version of /sbin/init, and a specific process
tree rooted at /sbin/ifup. If a matching graph launches
/usr/lib/firefox/firefox, then the launch must reside
in a process tree whose ancestors are executables living
in /usr/bin or /usr/sbin; this policy ensures that a web
browser has not been launched by a suspicious executable
that (for example) resides in a user’s home directory.

2.3 Verifier-side Infrastructure
Defining policies: A verifier defines a policy using one or
more template graphs.A template graph is a (typically proper)
subset of an attestation graph that the verifier associates with
a trustworthy software stack. At a high level, a template
graph consists of several connected subcomponents; the
template graph matches a provided attestation graph if there
is a mapping from the template to the attestation. Figure 3
shows an example of a template graph. Below, we describe
the mapping primitives that Cobweb provides.
Each concrete subcomponent of a template graph is

stitched together using meta-edges. An agnostic meta-edge
matches any path in the attestation graph to verify. A path-
sensitive meta-edge is associated with a hit function that de-
termines whether a path in the provided attestation graph is
a match. Our Cobweb prototype allows hit functions to be
defined in Python, using the graph representation defined
by the graph-tool library [2]. A hit function returns a two-
tuple. The first element is a boolean representing whether
the hit function detected a match; if no match was detected,
the second element contains diagnostic information about
why the match failed.

A vertex in a template graph has one or more labels. At a
minimum, a vertex is labeled with the hash of its associated
software component. A template graph can have at most
one vertex that possesses the special anchor label. An anchor
label indicates that a matching vertex must come at the start
of a matching attestation graph. Anchor labels are useful for
defining policies which require a certain software component
(e.g., /sbin/init) to start the attestor’s boot process.

A vertex can also be associated with a hit function that
determines if the vertex matches the one in the template
graph. Hit functions can be used to perform context-specific
analysis, e.g., to sanity-check the raw data for a vertex that

represent a configuration file. To avoid clients having to
unnecessarily send raw file data, the verifier fetches it on
demand, validating the hash of the returned data before
analyzing the raw data contents.
The cw-serverd program implements the verifier-side

of the Cobweb protocol. A single policy is represented by
one or more template graphs. A required template graph
defines vertices and edges which must exist in the attestor-
provided graph. A forbidden template graph specifies vertices
and edges that must not exist in the attestor-provided graph.
A template graph that lacks an anchor label can match in
arbitrary positions in the attestation graph.
If cw-serverd determines that an attestation has failed,

cw-serverd sends a summary of the failed graph predicates
to the attestor. The attestor can then add, remove, or update
the relevant software components.

Generating and maintaining policies: As vendors issue
updates to attestor-side software, a verifier’s policies become
stale. Cobweb provides infrastructure to automate policy
updating. The high-level approach is to run exemplar VMs
which act as known-good versions of attestor-side software.

• remeasured is a daemon that runs inside the guest OS
of a VM. remeasured uses platform-specific mecha-
nisms (scripted using Python code in a configuration
file) to fetch software updates for a VM. For example,
on Linux, remeasured runs apt-get update followed
by apt-get dist-upgrade. If the daemon finds up-
dates, it installs them, reboots the VM, and then pro-
duces new attestation graphs for the machine.

• exemplard runs on the VM host, and manages a
collection of exemplar VMs. In general, each VM
is suspended to disk. exemplard periodically wakes
up each VM, allowing the VM’s remeasured to
run. If remeasured generates new attestation graphs
for a VM, then remeasured sends those graphs to
exemplard. exemplard then runs the verifier’s pol-
icy for that VM against the new attestation graph. If
verification fails, exemplard notifies the administra-
tor by sending an email, writing to an error log, or
generating an HTTP POST request.

Importantly, exemplard maintains a longitudinal history
of each VM’s attestation graphs. These histories are use-
ful if a verifier wants to define policies that accept “recent-
enough” software stacks as valid. Also note that, if a verifier
wishes to support attestor-side hash ambiguity (§2.2), then
exemplar VMs must launch the relevant applications using
smokescreen.

3 Implementation
Our prototype implementation of Cobweb runs on Linux-
based attestors and verifiers. The implementation consists of
4,828 lines of Python code. The attestor-side library uses the
IMA kernel module [5] to measure files and extend PCR[10];
the library also uses Linux’s kernel-level event tracing [24]

Cobweb: Practical Remote Attestation Using Contextual Graphs SysTEX’17, October 28, 2017, Shanghai, China

to track system call behavior like invocations of fork() and
exec(). The attestor-side library uses the CamFlow kernel
module [13] to track cross-process data provenance via IPC
and the file system.
On the verifier, Cobweb uses the graph-tool library [2]

to execute the graph analyses that are associated with verifi-
cation policies. exemplard uses QEMU [16] and libvirt [7]
to manage VMs, and Berkeley DB [11] to store longitudinal
attestation histories for exemplar VMs.

4 Evaluation
Weuse three case studies to evaluate Cobweb. In all scenarios,
the attestor ran on a dual-core Dell XPS laptop with 2.40 GHz
processors and 8 GB of RAM. The verifier was a dual-core
Dell Precision desktop with 3.7 GHz processors and 16 GB
of RAM. The attestor and the verifier were connected by a
1 Gbps LAN, to minimize network delays and focus on the
computational overheads of attestation. In each scenario, the
attestor contacted the verifier one minute after the attestor
had rebooted. The descriptions below focus on the contextual
graph used in each scenario; however, verifiers also ensured
that the signed PCR[10] value agreed with the cumulative
hash of the traditional IMA object list.

Standard Linux: In this scenario, the attestor ran a stock
Linux 4.4.0 kernel. PCR extension was performed by the
IMA kernel module. The contextual graph was a hash-
annotated fork()/exec() process tree that was built
using kernel-level tracing of sched_process_fork and
sched_process_exec events [24]. The verifier’s policy op-
erated on the process tree, specifying an anchor vertex that
represented a specific hash-version of /sbin/init. The pol-
icy required exact hash matches (but tolerated nondetermin-
istic load orders) for 28 low-level executables and config-
uration files like /bin/sh and /lib/systemd/systemd-*.
The policy also required exact hash matches and deter-
ministic load orders for three process trees involving
network state (/sbin/ifup, /usr/sbin/NetworkManager,
and /usr/lib/NetworkManager/nm-dispatcher), and one
process tree involving the launch of the Docker subsys-
tem (/usr/bin/dockerd). The policy also required exact
hash matches for the ssh and nginx binaries, and used
hit functions to sanity-check /etc/ssh/sshd_config and
/etc/nginx/nginx.conf. For example, the verifier ensured
that sshd used at least 1024-bit server keys, and ran in privi-
lege separation mode [15].

Static IFC policies: In this scenario, the attestor ran a Linux
4.4.0 kernel that used AppArmor [17], a mandatory access
control system. AppArmor leverages per-application “pro-
files” to restrict application access to the network, the file
system, and kernel capabilities like CAP_SYS_PTRACE. The
contextual graph was a process tree, with the verifier re-
quiring exact matches for 32 low-level system binaries and
configuration files (without regard to their load order). The

verifier also used hit functions to sanity-check the AppAr-
mor profiles for MySQL, Firefox, Apache, libvirt, and Docker.
For example, the mod_apparmor extension [1] allows indi-
vidual Apache processes to transition between multiple Ap-
pArmor profiles, depending on the URL that a process is
handling. The allowable transitions are statically specified
by the profiles themselves; the verifier ensured that the tran-
sitions are reasonable, e.g., that no profile is allowed to serve
data from sensitive directories, and that, for the directories
which are being served, no profiles use blacklisted capabili-
ties. Note that verifying these profile characteristics cannot
be done simply by looking for profiles whose hash values
are whitelisted. The reason is that the profiles on each at-
testor can vary according to the content that is served by
the attestor’s Apache installation. Thus, the verifier policy
requires a hit function for each profile which performs se-
mantic analysis of the AppArmor metadata in the profile.

Dynamic IFC polices: The attestor was a web server
that ran a Linux 4.12.4 kernel with CamFlow [13] en-
abled. The attestor employed hash ambiguity (§2.2)
to hide the precise identity of its web stack; using
smokescreen, the attestor loaded an Apache/MySQL/PHP
stack, an NGINX/PostgreSQL/Ruby stack, and a Tor-
nado/MariaDB/Python stack. The contextual graph was a
process tree that was augmented as we describe shortly.
The verifier looked for exact matches for 51 system
binaries (including those of the ambiguous stacks), and
used hit functions to sanity-check various configuration
files for each web stack. Another hit function examined
/etc/camflow.ini to ensure that CamFlow tainted all
untrusted user data in /home/*. The attestor augmented the
process tree with additional edges which indicated 1) pairs
of processes that had engaged in IPC, and 2) process/file
pairs in which the file was tainted and the process read that
file. The verifier checked the contextual graph to ensure
the impossibility of tainted data flowing directly or indi-
rectly to processes in a web stack. Note that the contextual
graph did not disambiguate which web stack the attestor ran.

As shown in Table 1, Cobweb attestation generated a mod-
est amount of network traffic. The majority of the traffic
consisted of the gzipped attestation message that the at-
testor sent to the verifier; the embedded pathnames com-
pressed well, but the hash values did not, since hash values
are high-entropy. Verifiers had to fetch raw file data during
the evaluation of hit functions, but the fetched files (e.g.,
/etc/nginx/nginx.conf) were small and text-based (and
therefore highly compressible).

Table 1 also demonstrates that Cobweb attestation is fast,
taking less than a second in all three scenarios. Figure 4
provides a more detailed view of the attestation costs.

• 53%–59% of the attestation time involved 1) the serial-
ization and deserialization of Python data structures
representing attestation graphs, and 2) the verifier-side

SysTEX’17, October 28, 2017, Shanghai, China F. Wang et al.

Scenario Network traffic generated Vertices Edges Hit functions Hash ambiguity? End-to-end attestation time
Standard Linux 129 KB 2059 2058 2 No 603 ms
AppArmor 137 KB 2149 2148 5 No 758 ms
CamFlow 150 KB 2590 3691 10 Yes 957 ms

Table 1. Summary statistics for the attestation case studies. The “Edges” and “Vertices” columns summarize the context-
sensitive attestation graph, but ignore the traditional IMA-style list of hashed components; in all case studies, the IMA list
contained roughly 1900 items.

0

250

500

750

1000

Standard Linux AppArmor CamFlowEn
d-

to
-e

nd
 a

tt
es

ta
tio

n
tim

e
(m

s)

Verifier: Apply hit functions
Verifier: Find subgraph matches
Verifier: Find exact-hash vertex matches
Verifier: Convert to graph-tool format
Verifier: Receive+deserialize attestation message
Attestor: Serialize+send attestation graph
Attestor: Generate attestation graph

Figure 4. Cobweb’s attestation costs. Not shown are the
costs for invoking the TPM’s quote() interface, and verify-
ing the signature on the quote. These costs must be paid by
any attestation system; on our test machines, the costs were
240 ms and 27 ms respectively.

conversion of those structures into a format that was
compatible with the graph-tool library [2].

• Hit functions consumed 15%–37% of the total attesta-
tion time. The attestor and verifier were on the same
LAN, so fetch overheads for file data were minimal;
the bulk of the hit function cost involved the parsing
and analysis of the file data.

• The first attestation scenariowas the only one inwhich
the verifier’s policy looked for subgraphmatches. Even
though the policy only tried to match four subgraphs,
the cost was relatively high (101 ms) because deter-
mining subgraph isomorphism is computationally ex-
pensive.

Given these results, we believe that Cobweb attestation is
both expressive and practical.
As expected, the performance of exemplard and

remeasured is dominated by the costs of VM spin-up
and software update latency. For example, we installed
exemplard and remeasured on a quad-core machine with
3.4 GHz processors, 32 GB of RAM, and a 120 GB SSD. Reboot-
ing an Ubuntu VM with 4 GB of virtual RAM took roughly
7 seconds; checking for updates took roughly 3 seconds; if
updates were found, installing those updates took a variable
amount of time, but typically a few seconds. These aggregate

costs were much larger than the time needed for remeasured
to attest to exemplard.

5 Related Work
The Trusted Computing Group (TCG) has defined a high-
level specification for remote attestation [19]. The TCG has
also defined several low-level design documents for attes-
tation reports [22], verifier-side hash databases [20], and a
network-based attestation protocol [21]. Unfortunately, as
explained in Section 1, these specifications lack the seman-
tic richness that is needed for realistic attestation scenarios.
The TCG specifications are also notoriously difficult to un-
derstand, despite the basic idea of remote attestation being
simple. IBM’s OpenPTS [9] framework implements the TCG
attestation protocols, but to the best of our knowledge, the
only open-source project which leverages those protocols
is the StrongSwan VPN system [18] that forces clients to at-
test to a gateway before allowing network access. OpenPTS
implements verification policies using simple finite state ma-
chines [10] which are too crude to capture policies like those
in Section 4.

LKIM’s measurement data templates [8] allow attestors to
express richer information about OS state than mere hashes
of kernel objects. However, LKIM is not a generic, end-to-
end attestation framework; thus, LKIM has no solution for
challenges like how to specify rich verification policies, and
how to support hash ambiguity.

6 Conclusion
Cobweb is a framework that enables practical remote attes-
tation protocols. These protocols are more complex than a
textbook exchange of a list of hashes; these practical attes-
tation protocols involve contextual information about the
static and dynamic properties of attestor-side software. Us-
ing the generic abstraction of attestation graphs, Cobweb
allows verifiers to define rich policies as graph predicates.
Using hash ambiguity, Cobweb enables attestors to avoid
precisely identifying their software stacks, while still allow-
ing verifiers to determine that some trustworthy stack is
running on the attestor. Cobweb also provides verifier-side
infrastructure for automatically updating policies as exem-
plar software stacks receive patches or updates. Case studies
involving three different attestation scenarios demonstrate
that Cobweb is efficient, flexible, and easy to use.

Cobweb: Practical Remote Attestation Using Contextual Graphs SysTEX’17, October 28, 2017, Shanghai, China

References
[1] AppArmor. 2010. Mod apparmor. (December 10, 2010). http://wiki.

apparmor.net/index.php/Mod_apparmor.
[2] T. de Paula Peixoto. 2017. graph-tool: Efficient network analysis. (2017).

https://graph-tool.skewed.de/.
[3] Docker. 2017. Docker Overview. (2017). https://docs.docker.com/

engine/docker-overview/.
[4] T. Jaeger, R. Sailer, and U. Shankar. 2006. PRIMA: Policy-Reduced

Integrity Measurement Architecture. In Proceedings of SACMAT.
[5] D. Kasatkin. 2017. Integrity Measurement Architecture (IMA). (2017).

https://sourceforge.net/p/linux-ima/wiki/Home/.
[6] M. Kerrisk. 2013. Namespaces in Operation, Part 1: Namespaces

Overview. (January 4 2013). https://lwn.net/Articles/531114/.
[7] Libvirt Project. 2017. The Libvirt Virtualization API. (2017). https:

//libvirt.org/.
[8] P. Loscocco, P. Wilson, J.A. Pendergrass, and C.D. McDonell. 2007.

Linux Kernel Integrity Measurement Using Contextual Inspection. In
Proceedings of STC.

[9] S. Munetoh. 2011. Open Platform Trust Services. (May 6, 2011).
https://osdn.net/projects/openpts/wiki/FrontPage.

[10] S. Munetoh. 2011. OpenPTS Models. (December 11, 2011). https:
//github.com/openpts/openpts/tree/master/models.

[11] Oracle. 2016. Oracle Berkeley DB. (2016). http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/overview/
index.html.

[12] B. Parno, J.M. McCune, and A. Perrig. 2011. Bootstrapping Trust
in Modern Computers. (2011). https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/BootstrappingTrustBook.pdf.

[13] T. Pasquier, J. Singh, D. Eyers, and J. Bacon. 2015. CamFlow: Man-
aged Data-Sharing for Cloud Services. IEEE Transactions on Cloud
Computing (October 2015).

[14] M. Payer and T. Gross. 2012. Protecting Applications Against TOCT-
TOU Races by User-Space Caching of File Metadata. In Proceedings of
VEE.

[15] N. Provos, M. Friedl, and P. Honeyman. 2003. Preventing Privilege
Escalation. In Proceedings of USENIX Security.

[16] QEMU Project. 2017. QEMU: The Fast Processor Emulator. (2017).
https://www.qemu.org/.

[17] E. Ratliff. 2017. AppArmor. (June 22, 2017). https://wiki.ubuntu.com/
AppArmor.

[18] A. Steffen. 2011. The Linux Integrity Measurement Architecture and
TPM-Based Network Endpoint Assessment. In Proceedings of the Linux
Security Summit.

[19] Trusted Computing Group. 2006. TCG Infrastructure Working Group
Architecture Part II: Integrity Management. (November 17, 2006).
Specification Version 1.0, Revision 1.0.

[20] Trusted Computing Group. 2006. TCG Infrastructure Working Group
Reference Manifest (RM) Schema Specification. (November 17, 2006).
Specification Version 1.0, Revision 1.0.

[21] Trusted Computing Group. 2011. TCG Attestation PTS Protocol: Bind-
ing to TNC IF-M. (November 24, 2011). Specification Version 1.0,
Revision 28.

[22] Trusted Computing Group. 2011. TCG Infrastructure Working Group
Integrity Report Schema. (August 24, 2011). Specification Version 2.0,
Revision 5.

[23] Trusted Computing Group. 2011. TPM Main Part 1: Design Principles.
(March 1, 2011). Specification Version 1.2, Revision 116.

[24] T. Ts’o, L. Zefan, and T. Zanussi. 2017. Linux Kernel: Event Tracing
Documentation. (2017). https://www.kernel.org/doc/Documentation/
trace/events.txt.

[25] N. Wilfahrt. 2016. Dirty Cow: Vulnerability Details. (October
29, 2016). https://github.com/dirtycow/dirtycow.github.io/wiki/
VulnerabilityDetails.

[26] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. 2012. Concurrency
Attacks. In Proceedings of HotPar.

